BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 21795051)

  • 1. Current status of computational fluid dynamics for cerebral aneurysms: the clinician's perspective.
    Wong GK; Poon WS
    J Clin Neurosci; 2011 Oct; 18(10):1285-8. PubMed ID: 21795051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms.
    Miura Y; Ishida F; Umeda Y; Tanemura H; Suzuki H; Matsushima S; Shimosaka S; Taki W
    Stroke; 2013 Feb; 44(2):519-21. PubMed ID: 23223503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics--preliminary experience.
    Karmonik C; Klucznik R; Benndorf G
    Rofo; 2008 Mar; 180(3):209-15. PubMed ID: 18278729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm.
    Valen-Sendstad K; Mardal KA; Mortensen M; Reif BA; Langtangen HP
    J Biomech; 2011 Nov; 44(16):2826-32. PubMed ID: 21924724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant intracranial aneurysm embolization with a yield stress fluid material: insights from CFD analysis.
    Wang W; Graziano F; Russo V; Ulm AJ; De Kee D; Khismatullin DB
    Biorheology; 2013; 50(3-4):99-114. PubMed ID: 23863277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points.
    Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H
    World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in wall shear stress magnitude after aneurysm rupture.
    Kono K; Tomura N; Yoshimura R; Terada T
    Acta Neurochir (Wien); 2013 Aug; 155(8):1559-63. PubMed ID: 23715949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal variations of wall shear stress parameters in intracranial aneurysms--importance of patient-specific inflow waveforms for CFD calculations.
    Karmonik C; Yen C; Diaz O; Klucznik R; Grossman RG; Benndorf G
    Acta Neurochir (Wien); 2010 Aug; 152(8):1391-8; discussion 1398. PubMed ID: 20390310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow Dynamics of Aneurysm Growth and Rupture: Challenges for the Development of Computational Flow Dynamics as a Diagnostic Tool to Detect Rupture-Prone Aneurysms.
    Frösen J
    Acta Neurochir Suppl; 2016; 123():89-95. PubMed ID: 27637634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic analysis of intracranial aneurysms with daughter blebs.
    Zhang Y; Mu S; Chen J; Wang S; Li H; Yu H; Jiang F; Yang X
    Eur Neurol; 2011; 66(6):359-67. PubMed ID: 22134355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational fluid dynamics as a risk assessment tool for aneurysm rupture.
    Murayama Y; Fujimura S; Suzuki T; Takao H
    Neurosurg Focus; 2019 Jul; 47(1):E12. PubMed ID: 31261116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Errors in power-law estimations of inflow rates for intracranial aneurysm CFD.
    Chnafa C; Bouillot P; Brina O; Najafi M; Delattre BMA; Vargas MI; Pereira VM; Steinman DA
    J Biomech; 2018 Oct; 80():159-165. PubMed ID: 30243498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm.
    van Ooij P; Potters WV; Guédon A; Schneiders JJ; Marquering HA; Majoie CB; vanBavel E; Nederveen AJ
    J Magn Reson Imaging; 2013 Oct; 38(4):876-84. PubMed ID: 23417769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2018 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance fluid dynamics for intracranial aneurysms--comparison with computed fluid dynamics.
    Naito T; Miyachi S; Matsubara N; Isoda H; Izumi T; Haraguchi K; Takahashi I; Ishii K; Wakabayashi T
    Acta Neurochir (Wien); 2012 Jun; 154(6):993-1001. PubMed ID: 22392013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamic analysis of intracranial aneurysmal bleb formation.
    Russell JH; Kelson N; Barry M; Pearcy M; Fletcher DF; Winter CD
    Neurosurgery; 2013 Dec; 73(6):1061-8; discussion 1068-9. PubMed ID: 23949275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.