BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 21795684)

  • 1. Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling.
    Yi J; Ma C; Li Y; Weisleder N; Ríos E; Ma J; Zhou J
    J Biol Chem; 2011 Sep; 286(37):32436-43. PubMed ID: 21795684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperactive intracellular calcium signaling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis.
    Zhou J; Yi J; Fu R; Liu E; Siddique T; Ríos E; Deng HX
    J Biol Chem; 2010 Jan; 285(1):705-12. PubMed ID: 19889637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle.
    Ainbinder A; Boncompagni S; Protasi F; Dirksen RT
    Cell Calcium; 2015 Jan; 57(1):14-24. PubMed ID: 25477138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Ca(2+) uptake in skeletal muscle health and disease.
    Zhou J; Dhakal K; Yi J
    Sci China Life Sci; 2016 Aug; 59(8):770-6. PubMed ID: 27430885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle.
    Shkryl VM; Shirokova N
    J Biol Chem; 2006 Jan; 281(3):1547-54. PubMed ID: 16216882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive impairment of CaV1.1 function in the skeletal muscle of mice expressing a mutant type 1 Cu/Zn superoxide dismutase (G93A) linked to amyotrophic lateral sclerosis.
    Beqollari D; Romberg CF; Dobrowolny G; Martini M; Voss AA; Musarò A; Bannister RA
    Skelet Muscle; 2016; 6():24. PubMed ID: 27340545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cannabinoid signalling inhibits sarcoplasmic Ca
    Oláh T; Bodnár D; Tóth A; Vincze J; Fodor J; Reischl B; Kovács A; Ruzsnavszky O; Dienes B; Szentesi P; Friedrich O; Csernoch L
    J Physiol; 2016 Dec; 594(24):7381-7398. PubMed ID: 27641745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local Ca
    Yamamura H; Kawasaki K; Inagaki S; Suzuki Y; Imaizumi Y
    Am J Physiol Cell Physiol; 2018 Jan; 314(1):C88-C98. PubMed ID: 29046294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the mechanisms of excitation-contraction coupling in frog skeletal muscle based on measurements of [Ca
    Olivera JF; Pizarro G
    J Muscle Res Cell Motil; 2018 Apr; 39(1-2):41-60. PubMed ID: 30143958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.
    Beqollari D; Romberg CF; Filipova D; Meza U; Papadopoulos S; Bannister RA
    J Gen Physiol; 2015 Jul; 146(1):97-108. PubMed ID: 26078055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of physiological Ca
    Karam C; Yi J; Xiao Y; Dhakal K; Zhang L; Li X; Manno C; Xu J; Li K; Cheng H; Ma J; Zhou J
    Skelet Muscle; 2017 Apr; 7(1):6. PubMed ID: 28395670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres.
    Woods CE; Novo D; DiFranco M; Vergara JL
    J Physiol; 2004 May; 557(Pt 1):59-75. PubMed ID: 15004213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired excitation-contraction coupling in muscle fibres from the dynamin2
    Kutchukian C; Szentesi P; Allard B; Trochet D; Beuvin M; Berthier C; Tourneur Y; Guicheney P; Csernoch L; Bitoun M; Jacquemond V
    J Physiol; 2017 Dec; 595(24):7369-7382. PubMed ID: 29071728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbations in intracellular Ca2+ handling in skeletal muscle in the G93A*SOD1 mouse model of amyotrophic lateral sclerosis.
    Chin ER; Chen D; Bobyk KD; Mázala DA
    Am J Physiol Cell Physiol; 2014 Dec; 307(11):C1031-8. PubMed ID: 25252949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mitochondrial uncoupling on Ca(2+) signaling during excitation-contraction coupling in atrial myocytes.
    Zima AV; Pabbidi MR; Lipsius SL; Blatter LA
    Am J Physiol Heart Circ Physiol; 2013 Apr; 304(7):H983-93. PubMed ID: 23376829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of myoplasmic pH on excitation-contraction coupling in skeletal muscle fibres of the toad.
    Lamb GD; Recupero E; Stephenson DG
    J Physiol; 1992 Mar; 448():211-24. PubMed ID: 1317442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of calcium feedback in excitation-contraction coupling in isolated triads.
    Yano M; el-Hayek R; Ikemoto N
    J Biol Chem; 1995 Aug; 270(34):19936-42. PubMed ID: 7650009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysregulated mitochondrial Ca
    Zhou J; Li A; Li X; Yi J
    Arch Biochem Biophys; 2019 Mar; 663():249-258. PubMed ID: 30682329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex Vivo Measurements of Ca
    Gherardi G; Mammucari C
    Methods Mol Biol; 2019; 1925():103-109. PubMed ID: 30674020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The calcium stored in the sarcoplasmic reticulum acts as a safety mechanism in rainbow trout heart.
    Cros C; Sallé L; Warren DE; Shiels HA; Brette F
    Am J Physiol Regul Integr Comp Physiol; 2014 Dec; 307(12):R1493-501. PubMed ID: 25377479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.