These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 21795684)

  • 21. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dysregulated mitochondrial Ca
    Zhou J; Li A; Li X; Yi J
    Arch Biochem Biophys; 2019 Mar; 663():249-258. PubMed ID: 30682329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From excitation to intracellular Ca
    Allard B
    Neuromuscul Disord; 2018 May; 28(5):394-401. PubMed ID: 29627324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous electrical activity and associated changes in calcium concentration in guinea-pig gastric smooth muscle.
    Fukuta H; Kito Y; Suzuki H
    J Physiol; 2002 Apr; 540(Pt 1):249-60. PubMed ID: 11927684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-species transcriptomics reveals evolutionary diversity in the mechanisms regulating shrimp tail muscle excitation-contraction coupling.
    Huerlimann R; Maes GE; Maxwell MJ; Mobli M; Launikonis BS; Jerry DR; Wade NM
    Gene; 2020 Aug; 752():144765. PubMed ID: 32413480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential impact of mitochondrial positioning on mitochondrial Ca(2+) uptake and Ca(2+) spark suppression in skeletal muscle.
    Rossi AE; Boncompagni S; Wei L; Protasi F; Dirksen RT
    Am J Physiol Cell Physiol; 2011 Nov; 301(5):C1128-39. PubMed ID: 21849670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca
    Kutchukian C; Szentesi P; Allard B; Buj-Bello A; Csernoch L; Jacquemond V
    Cell Calcium; 2019 Jun; 80():91-100. PubMed ID: 30999217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3D diffusional-compartmental model of the calcium dynamics in cytosol, sarcoplasmic reticulum and mitochondria of murine skeletal muscle fibers.
    Marcucci L; Canato M; Protasi F; Stienen GJM; Reggiani C
    PLoS One; 2018; 13(7):e0201050. PubMed ID: 30048500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numb is required for optimal contraction of skeletal muscle.
    De Gasperi R; Mo C; Azulai D; Wang Z; Harlow LM; Du Y; Graham Z; Pan J; Liu XH; Guo L; Zhang B; Ko F; Raczkowski AM; Bauman WA; Goulbourne CN; Zhao W; Brotto M; Cardozo CP
    J Cachexia Sarcopenia Muscle; 2022 Feb; 13(1):454-466. PubMed ID: 35001540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes.
    Lainé J; Skoglund G; Fournier E; Tabti N
    Skelet Muscle; 2018 Jan; 8(1):1. PubMed ID: 29304851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attenuated Ca(2+) release in a mouse model of limb girdle muscular dystrophy 2A.
    DiFranco M; Kramerova I; Vergara JL; Spencer MJ
    Skelet Muscle; 2016; 6():11. PubMed ID: 26913171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of calcium sparks in intact skeletal muscle fibers.
    Park KH; Weisleder N; Zhou J; Gumpper K; Zhou X; Duann P; Ma J; Lin PH
    J Vis Exp; 2014 Feb; (84):e50898. PubMed ID: 24638093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered Ca(2+) signaling in skeletal muscle fibers of the R6/2 mouse, a model of Huntington's disease.
    Braubach P; Orynbayev M; Andronache Z; Hering T; Landwehrmeyer GB; Lindenberg KS; Melzer W
    J Gen Physiol; 2014 Nov; 144(5):393-413. PubMed ID: 25348412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ca2+ release in muscle fibers expressing R4892W and G4896V type 1 ryanodine receptor disease mutants.
    Lefebvre R; Legrand C; Groom L; Dirksen RT; Jacquemond V
    PLoS One; 2013; 8(1):e54042. PubMed ID: 23308296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voltage-controlled Ca2+ release and entry flux in isolated adult muscle fibres of the mouse.
    Ursu D; Schuhmeier RP; Melzer W
    J Physiol; 2005 Jan; 562(Pt 2):347-65. PubMed ID: 15528246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mechanism for both capacitative Ca(2+) entry and excitation-contraction coupled Ca(2+) release by the sarcoplasmic reticulum of skeletal muscle cells.
    Islam MN; Narayanan B; Ochs RS
    Exp Biol Med (Maywood); 2002 Jun; 227(6):425-31. PubMed ID: 12037132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial Ca2+-handling in fast skeletal muscle fibers from wild type and calsequestrin-null mice.
    Scorzeto M; Giacomello M; Toniolo L; Canato M; Blaauw B; Paolini C; Protasi F; Reggiani C; Stienen GJ
    PLoS One; 2013; 8(10):e74919. PubMed ID: 24098358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compartment calcium model of frog skeletal muscle during activation.
    Liu W; Olson SD
    J Theor Biol; 2015 Jan; 364():139-53. PubMed ID: 25234233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcitonin gene-related peptide restores disrupted excitation-contraction coupling in myotubes expressing central core disease mutations in RyR1.
    Vega AV; Ramos-Mondragón R; Calderón-Rivera A; Zarain-Herzberg A; Avila G
    J Physiol; 2011 Oct; 589(Pt 19):4649-69. PubMed ID: 21825032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.