BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21795770)

  • 1. Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate.
    Chen MX; Song XH; Gan ZY; Liu S
    Nanotechnology; 2011 Aug; 22(34):345704. PubMed ID: 21795770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermocompression bonding of vertically aligned carbon nanotube turfs to metalized substrates.
    Johnson RD; Bahr DF; Richards CD; Richards RF; McClain D; Green J; Jiao J
    Nanotechnology; 2009 Feb; 20(6):065703. PubMed ID: 19417397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a thermal interface material fabricated using thermocompression bonding of carbon nanotube turf.
    Hamdan A; Cho J; Johnson R; Jiao J; Bahr D; Richards R; Richards C
    Nanotechnology; 2010 Jan; 21(1):015702. PubMed ID: 19946149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A metallization and bonding approach for high performance carbon nanotube thermal interface materials.
    Cross R; Cola BA; Fisher T; Xu X; Gall K; Graham S
    Nanotechnology; 2010 Nov; 21(44):445705. PubMed ID: 20935353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of carbon nanotube thermal interface material on aluminum alloy substrates with low pressure CVD.
    Gao ZL; Zhang K; Yuen MM
    Nanotechnology; 2011 Jul; 22(26):265611. PubMed ID: 21576791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertically aligned carbon nanotube electrodes directly grown on a glassy carbon electrode.
    Park S; Park DW; Yang CS; Kim KR; Kwak JH; So HM; Ahn CW; Kim BS; Chang H; Lee JO
    ACS Nano; 2011 Sep; 5(9):7061-8. PubMed ID: 21838325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.
    Zou QM; Deng LM; Li DW; Zhou YS; Golgir HR; Keramatnejad K; Fan LS; Jiang L; Silvain JF; Lu YF
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37340-37349. PubMed ID: 28976178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-scale transfer of vertically aligned carbon nanotube arrays.
    Wang M; Li T; Yao Y; Lu H; Li Q; Chen M; Li Q
    J Am Chem Soc; 2014 Dec; 136(52):18156-62. PubMed ID: 25490088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic Layer Deposition of Buffer Layers for the Growth of Vertically Aligned Carbon Nanotube Arrays.
    Li HH; Yuan GJ; Shan B; Zhang XX; Ma HP; Tian YZ; Lu HL; Liu J
    Nanoscale Res Lett; 2019 Apr; 14(1):119. PubMed ID: 30941586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes.
    Ding J; Fu S; Zhang R; Boon E; Lee W; Fisher FT; Yang EH
    Nanotechnology; 2017 Nov; 28(46):465302. PubMed ID: 29064823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterned arrays of vertically aligned carbon nanotube microelectrodes on carbon films prepared by thermal chemical vapor deposition.
    Liu X; Baronian KH; Downard AJ
    Anal Chem; 2008 Nov; 80(22):8835-9. PubMed ID: 18947203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Vapor Deposition of Vertically Aligned Carbon Nanotube Arrays: Critical Effects of Oxide Buffer Layers.
    Li H; Yuan G; Shan B; Zhang X; Ma H; Tian Y; Lu H; Liu J
    Nanoscale Res Lett; 2019 Mar; 14(1):106. PubMed ID: 30900108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Role of the Acetylene Content and Fe/C Ratio on the Thickness and Density of Vertically Aligned Carbon Nanotubes Grown at Low Temperature by a One-Step Catalytic Chemical Vapor Deposition Process.
    Combrisson A; Charon E; Pinault M; Reynaud C; Mayne-L'Hermite M
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of growth pressure on the synthesis of vertically aligned carbon nanotubes and their growth termination.
    Park S; Song W; Kim Y; Song I; Kim SH; Lee SI; Jang SW; Parkl CY
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5216-20. PubMed ID: 24758006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous high-yield production of vertically aligned carbon nanotubes on 2D and 3D substrates.
    Guzmán de Villoria R; Hart AJ; Wardle BL
    ACS Nano; 2011 Jun; 5(6):4850-7. PubMed ID: 21591620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive Strength Enhancement of Vertically Aligned Carbon Nanotube Forests by Constraint of Graphene Sheets.
    Su CC; Chen TX; Chang SH
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites.
    Zeng Y; Ci L; Carey BJ; Vajtai R; Ajayan PM
    ACS Nano; 2010 Nov; 4(11):6798-804. PubMed ID: 20958076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field Emission Properties of Cu-Filled Vertically Aligned Carbon Nanotubes Grown Directly on Thin Cu Foils.
    Nwanno CE; Thapa A; Watt J; Simkins Bendayan D; Li W
    Nanomaterials (Basel); 2024 Jun; 14(11):. PubMed ID: 38869613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes.
    Trivedi S; Alameh K
    Springerplus; 2016; 5(1):1158. PubMed ID: 27504256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.