BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21795811)

  • 1. A conformation-dependent stereochemical library improves crystallographic refinement even at atomic resolution.
    Tronrud DE; Karplus PA
    Acta Crystallogr D Biol Crystallogr; 2011 Aug; 67(Pt 8):699-706. PubMed ID: 21795811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement.
    Moriarty NW; Tronrud DE; Adams PD; Karplus PA
    FEBS J; 2014 Sep; 281(18):4061-71. PubMed ID: 24890778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using a conformation-dependent stereochemical library improves crystallographic refinement of proteins.
    Tronrud DE; Berkholz DS; Karplus PA
    Acta Crystallogr D Biol Crystallogr; 2010 Jul; 66(Pt 7):834-42. PubMed ID: 20606264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.
    Borbulevych OY; Plumley JA; Martin RI; Merz KM; Westerhoff LM
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1233-47. PubMed ID: 24816093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A complete Fourier-synthesis-based backbone-conformation-dependent library for proteins.
    Tronrud DE; Karplus PA
    Acta Crystallogr D Struct Biol; 2021 Feb; 77(Pt 2):249-266. PubMed ID: 33559613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream.
    Moriarty NW; Tronrud DE; Adams PD; Karplus PA
    Acta Crystallogr D Struct Biol; 2016 Jan; 72(Pt 1):176-9. PubMed ID: 26894545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation-dependent restraints for polynucleotides: the sugar moiety.
    Kowiel M; Brzezinski D; Gilski M; Jaskolski M
    Nucleic Acids Res; 2020 Jan; 48(2):962-973. PubMed ID: 31799624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical analysis of crystallographic data obtained from squid ganglion DFPase at 0.85 A resolution.
    Koepke J; Scharff EI; Lücke C; Rüterjans H; Fritzsch G
    Acta Crystallogr D Biol Crystallogr; 2003 Oct; 59(Pt 10):1744-54. PubMed ID: 14501113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated refinement of macromolecular structures at low resolution using prior information.
    Kovalevskiy O; Nicholls RA; Murshudov GN
    Acta Crystallogr D Struct Biol; 2016 Oct; 72(Pt 10):1149-1161. PubMed ID: 27710936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix.
    Moriarty NW; Janowski PA; Swails JM; Nguyen H; Richardson JS; Case DA; Adams PD
    Acta Crystallogr D Struct Biol; 2020 Jan; 76(Pt 1):51-62. PubMed ID: 31909743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure Refinement at Atomic Resolution.
    Jaskolski M
    Methods Mol Biol; 2017; 1607():549-563. PubMed ID: 28573588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases.
    Kuszewski J; Gronenborn AM; Clore GM
    Protein Sci; 1996 Jun; 5(6):1067-80. PubMed ID: 8762138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REFMAC5 for the refinement of macromolecular crystal structures.
    Murshudov GN; Skubák P; Lebedev AA; Pannu NS; Steiner RA; Nicholls RA; Winn MD; Long F; Vagin AA
    Acta Crystallogr D Biol Crystallogr; 2011 Apr; 67(Pt 4):355-67. PubMed ID: 21460454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation dependence of backbone geometry in proteins.
    Berkholz DS; Shapovalov MV; Dunbrack RL; Karplus PA
    Structure; 2009 Oct; 17(10):1316-25. PubMed ID: 19836332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.
    Janowski PA; Moriarty NW; Kelley BP; Case DA; York DM; Adams PD; Warren GL
    Acta Crystallogr D Struct Biol; 2016 Sep; 72(Pt 9):1062-72. PubMed ID: 27599738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of alternative conformations by unrestrained refinement.
    Sobolev OV; Lunin VY
    Acta Crystallogr D Biol Crystallogr; 2012 Sep; 68(Pt 9):1118-27. PubMed ID: 22948912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereochemical restraints revisited: how accurate are refinement targets and how much should protein structures be allowed to deviate from them?
    Jaskolski M; Gilski M; Dauter Z; Wlodawer A
    Acta Crystallogr D Biol Crystallogr; 2007 May; 63(Pt 5):611-20. PubMed ID: 17452786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution.
    Headd JJ; Echols N; Afonine PV; Grosse-Kunstleve RW; Chen VB; Moriarty NW; Richardson DC; Richardson JS; Adams PD
    Acta Crystallogr D Biol Crystallogr; 2012 Apr; 68(Pt 4):381-90. PubMed ID: 22505258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-sulfur clusters have no right angles.
    Moriarty NW; Adams PD
    Acta Crystallogr D Struct Biol; 2019 Jan; 75(Pt 1):16-20. PubMed ID: 30644841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics.
    Yu N; Yennawar HP; Merz KM
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):322-32. PubMed ID: 15735343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.