These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 21796248)

  • 1. Reducing infections through nanotechnology and nanoparticles.
    Taylor E; Webster TJ
    Int J Nanomedicine; 2011; 6():1463-73. PubMed ID: 21796248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilms: prevention and treatment.
    Rowson C; Townsend R
    Br J Hosp Med (Lond); 2016 Dec; 77(12):699-703. PubMed ID: 27937018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofilms and human health.
    Srivastava S; Bhargava A
    Biotechnol Lett; 2016 Jan; 38(1):1-22. PubMed ID: 26386834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention and control of biofilm-based medical-device-related infections.
    Francolini I; Donelli G
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):227-38. PubMed ID: 20412300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm in implant infections: its production and regulation.
    Costerton JW; Montanaro L; Arciola CR
    Int J Artif Organs; 2005 Nov; 28(11):1062-8. PubMed ID: 16353112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Implanted medical device-related infections: pathophysiology and prevention].
    Lebeaux D; Ghigo JM; Lucet JC
    Rev Prat; 2014 May; 64(5):620-5. PubMed ID: 24923044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial biofilm formation: a need to act.
    Römling U; Kjelleberg S; Normark S; Nyman L; Uhlin BE; Åkerlund B
    J Intern Med; 2014 Aug; 276(2):98-110. PubMed ID: 24796496
    [No Abstract]   [Full Text] [Related]  

  • 8. Nanomaterial-based treatments for medical device-associated infections.
    Tran N; Tran PA
    Chemphyschem; 2012 Jul; 13(10):2481-94. PubMed ID: 22517627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerant Small-colony Variants Form Prior to Resistance Within a Staphylococcus aureus Biofilm Based on Antibiotic Selective Pressure.
    Manasherob R; Mooney JA; Lowenberg DW; Bollyky PL; Amanatullah DF
    Clin Orthop Relat Res; 2021 Jul; 479(7):1471-1481. PubMed ID: 33835090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteria responsive antibacterial surfaces for indwelling device infections.
    Traba C; Liang JF
    J Control Release; 2015 Jan; 198():18-25. PubMed ID: 25481445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in nanotechnology for eradicating bacterial biofilm.
    Sahli C; Moya SE; Lomas JS; Gravier-Pelletier C; Briandet R; Hémadi M
    Theranostics; 2022; 12(5):2383-2405. PubMed ID: 35265216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Management of biofilm-associated infections: what can we expect from recent research on biofilm lifestyles?].
    Lebeaux D; Ghigo JM
    Med Sci (Paris); 2012; 28(8-9):727-39. PubMed ID: 22920875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance.
    Natan M; Banin E
    FEMS Microbiol Rev; 2017 May; 41(3):302-322. PubMed ID: 28419240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibiotics Enhance Prevention and Eradication Efficacy of Cathodic-Voltage-Controlled Electrical Stimulation against Titanium-Associated Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Biofilms.
    Canty MK; Hansen LA; Tobias M; Spencer S; Henry T; Luke-Marshall NR; Campagnari AA; Ehrensberger MT
    mSphere; 2019 May; 4(3):. PubMed ID: 31043516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces.
    Mi G; Shi D; Wang M; Webster TJ
    Adv Healthc Mater; 2018 Jul; 7(13):e1800103. PubMed ID: 29790304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustained Nitric Oxide-Releasing Nanoparticles Interfere with Methicillin-Resistant Staphylococcus aureus Adhesion and Biofilm Formation in a Rat Central Venous Catheter Model.
    Mihu MR; Cabral V; Pattabhi R; Tar MT; Davies KP; Friedman AJ; Martinez LR; Nosanchuk JD
    Antimicrob Agents Chemother; 2017 Jan; 61(1):. PubMed ID: 27821454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing the risk of infection associated with vascular access devices through nanotechnology: a perspective.
    Zhang L; Keogh S; Rickard CM
    Int J Nanomedicine; 2013; 8():4453-66. PubMed ID: 24293997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control.
    Liu Y; Shi L; Su L; van der Mei HC; Jutte PC; Ren Y; Busscher HJ
    Chem Soc Rev; 2019 Jan; 48(2):428-446. PubMed ID: 30601473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria.
    van Hengel IAJ; Putra NE; Tierolf MWAM; Minneboo M; Fluit AC; Fratila-Apachitei LE; Apachitei I; Zadpoor AA
    Acta Biomater; 2020 Apr; 107():325-337. PubMed ID: 32145392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.