These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21796295)

  • 1. Density functional studies of functionalized graphitic materials with late transition metals for Oxygen Reduction Reactions.
    Calle-Vallejo F; Martínez JI; Rossmeisl J
    Phys Chem Chem Phys; 2011 Sep; 13(34):15639-43. PubMed ID: 21796295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.
    Wu G; Zelenay P
    Acc Chem Res; 2013 Aug; 46(8):1878-89. PubMed ID: 23815084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics.
    Zhang J; Vukmirovic MB; Sasaki K; Nilekar AU; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2005 Sep; 127(36):12480-1. PubMed ID: 16144382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.
    Su HY; Gorlin Y; Man IC; Calle-Vallejo F; Nørskov JK; Jaramillo TF; Rossmeisl J
    Phys Chem Chem Phys; 2012 Oct; 14(40):14010-22. PubMed ID: 22990481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unexpected monoatomic catalytic-host synergetic OER/ORR by graphitic carbon nitride: density functional theory.
    Wu Y; Li C; Liu W; Li H; Gong Y; Niu L; Liu X; Sun C; Xu S
    Nanoscale; 2019 Mar; 11(11):5064-5071. PubMed ID: 30839964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolution of oxygen reduction electrocatalysts in an acidic environment: density functional theory study.
    Gu Z; Balbuena PB
    J Phys Chem A; 2006 Aug; 110(32):9783-7. PubMed ID: 16898677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR).
    Gao MR; Jiang J; Yu SH
    Small; 2012 Jan; 8(1):13-27. PubMed ID: 21972127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of electronegativity differences and surface structure in molecular dissociation reactions at transition metal surfaces.
    Crawford P; Hu P
    J Phys Chem B; 2006 Dec; 110(49):24929-35. PubMed ID: 17149914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction.
    Wang S; Yu D; Dai L
    J Am Chem Soc; 2011 Apr; 133(14):5182-5. PubMed ID: 21413707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halogen substitutions leading to enhanced oxygen evolution and oxygen reduction reactions in metalloporphyrin frameworks.
    Wannakao S; Maihom T; Kongpatpanich K; Limtrakul J; Promarak V
    Phys Chem Chem Phys; 2017 Nov; 19(43):29540-29548. PubMed ID: 29082388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.
    Wang VC
    Phys Chem Chem Phys; 2016 Aug; 18(32):22364-72. PubMed ID: 27460039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational investigation of O2 reduction and diffusion on 25% Sr-doped LaMnO3 cathodes in solid oxide fuel cells.
    Chen HT; Raghunath P; Lin MC
    Langmuir; 2011 Jun; 27(11):6787-93. PubMed ID: 21563810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface science investigations of oxidative chemistry on gold.
    Gong J; Mullins CB
    Acc Chem Res; 2009 Aug; 42(8):1063-73. PubMed ID: 19588952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal-Air Battery Electrodes.
    Hardin WG; Slanac DA; Wang X; Dai S; Johnston KP; Stevenson KJ
    J Phys Chem Lett; 2013 Apr; 4(8):1254-9. PubMed ID: 26282138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT.
    Hansen HA; Rossmeisl J; Nørskov JK
    Phys Chem Chem Phys; 2008 Jul; 10(25):3722-30. PubMed ID: 18563233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions.
    Shen M; Ruan C; Chen Y; Jiang C; Ai K; Lu L
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1207-18. PubMed ID: 25531776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium.
    Dathar GK; Shelton WA; Xu Y
    J Phys Chem Lett; 2012 Apr; 3(7):891-5. PubMed ID: 26286416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube supported MnO₂ catalysts for oxygen reduction reaction and their applications in microbial fuel cells.
    Lu M; Kharkwal S; Ng HY; Li SF
    Biosens Bioelectron; 2011 Aug; 26(12):4728-32. PubMed ID: 21676607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic activity of Co-N(x)/C electrocatalysts for oxygen reduction reaction: a density functional theory study.
    Kattel S; Atanassov P; Kiefer B
    Phys Chem Chem Phys; 2013 Jan; 15(1):148-53. PubMed ID: 23147392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.