BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21796299)

  • 1. Kinetics and mechanism of the reduction of a macrocyclic Rh(III) complex by chromium(II) ions: pH-controlled selectivity to rhodium(II) vs. rhodium(III) hydride.
    Szajna-Fuller E; Bakac A
    Dalton Trans; 2011 Oct; 40(40):10598-602. PubMed ID: 21796299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of nitrous acid with a macrocyclic rhodium complex that acts as a functional model of nitrite reductase.
    Kristian KE; Bakac A
    Inorg Chem; 2012 Apr; 51(8):4877-82. PubMed ID: 22480334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base-catalyzed insertion of dioxygen into rhodium-hydrogen bonds: kinetics and mechanism.
    Szajna-Fuller E; Bakac A
    Inorg Chem; 2010 Feb; 49(3):781-5. PubMed ID: 19860459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, crystal structure, and unusually facile redox chemistry of a macrocyclic nitrosylrhodium complex.
    Kristian KE; Song W; Ellern A; Guzei IA; Bakac A
    Inorg Chem; 2010 Aug; 49(15):7182-7. PubMed ID: 20604519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-catalyzed oxidation of iodide ions by superoxo complexes of rhodium and chromium.
    Bakac A; Shi C; Pestovsky O
    Inorg Chem; 2004 Aug; 43(17):5416-21. PubMed ID: 15310222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of hydrogen-atom abstraction from rhodium hydrides by alkyl radicals in aqueous solutions.
    Pestovsky O; Veysey SW; Bakac A
    Chemistry; 2011 Apr; 17(16):4518-22. PubMed ID: 21438044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous rhodium(III) hydrides and mononuclear rhodium(II) complexes.
    Bakac A
    Dalton Trans; 2006 Apr; (13):1589-96. PubMed ID: 16547532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium thermodynamic studies in water: reactions of dihydrogen with rhodium(III) porphyrins relevant to Rh-Rh, Rh-H, and Rh-OH bond energetics.
    Fu X; Wayland BB
    J Am Chem Soc; 2004 Mar; 126(8):2623-31. PubMed ID: 14982472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand effect on the kinetics of hydroperoxochromium(III)-oxochromium(V) transformation and the lifetime of chromium(V).
    Lemma K; Ellern A; Bakac A
    Dalton Trans; 2006 Jan; (1):58-63. PubMed ID: 16357961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen reduction reactions of monometallic rhodium hydride complexes.
    Teets TS; Nocera DG
    Inorg Chem; 2012 Jul; 51(13):7192-201. PubMed ID: 22708892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osazone anion radical complex of rhodium(III).
    Patra SC; Biswas MK; Maity AN; Ghosh P
    Inorg Chem; 2011 Feb; 50(4):1331-8. PubMed ID: 21261283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible light-induced release of nitrogen monoxide from a nitrosylrhodium complex.
    Song W; Kristian KE; Bakac A
    Chemistry; 2011 Apr; 17(16):4513-7. PubMed ID: 21344523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allylic C-H bond activation and functionalization mediated by tris(oxazolinyl)borato rhodium(I) and iridium(I) compounds.
    Ho HA; Gray TS; Baird B; Ellern A; Sadow AD
    Dalton Trans; 2011 Jun; 40(24):6500-14. PubMed ID: 21566811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of rhodium(III)-catalyzed hydrogenation of carbon dioxide into formic acid. Significant differences in reactivity among rhodium(III), rhodium(I), and ruthenium(II) complexes.
    Musashi Y; Sakaki S
    J Am Chem Soc; 2002 Jun; 124(25):7588-603. PubMed ID: 12071769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic aspects of the chemistry of mononuclear Cr(III) complexes with pendant-arm macrocyclic ligands and formation of discrete Cr(III)/Fe(II) and Cr(III)/Fe(II)/Co(III) cyano-bridged mixed valence compounds.
    Basallote MG; Bernhardt PV; Calvet T; Castillo CE; Font-Bardia M; Martínez M; Rodríguez C
    Dalton Trans; 2009 Nov; (43):9567-77. PubMed ID: 19859612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between electrochemical potentials and substitution reaction rates of ferrocene-containing β-diketonato rhodium(I) complexes; cytotoxicity of [Rh(FcCOCHCOPh)(cod)].
    Conradie J; Swarts JC
    Dalton Trans; 2011 Jun; 40(22):5844-51. PubMed ID: 21423964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Rh-OCH3 and Rh-CH2OH bond dissociation energetics from methanol C-H and O-H bond reactions with rhodium(II) porphyrins.
    Sarkar S; Li S; Wayland BB
    J Am Chem Soc; 2010 Oct; 132(39):13569-71. PubMed ID: 20831223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.
    Vilar VJ; Botelho CM; Boaventura RA
    J Hazard Mater; 2007 Nov; 149(3):643-9. PubMed ID: 17507158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of ferricytochrome c catalyzed by optically active chromium(III) complexes.
    Scholten U; Diserens C; Stoeckli-Evans H; Bernauer K; Meyer M; Stuppfler L; Lucas D
    Inorg Chem; 2009 Dec; 48(23):10942-53. PubMed ID: 19943690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.