These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21796338)

  • 1. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
    Qian F; El Hiani Y; Linsdell P
    Pflugers Arch; 2011 Oct; 462(4):559-71. PubMed ID: 21796338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Wang W; El Hiani Y; Linsdell P
    J Gen Physiol; 2011 Aug; 138(2):165-78. PubMed ID: 21746847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    J Biol Chem; 2010 Oct; 285(42):32126-40. PubMed ID: 20675380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
    Fatehi M; Linsdell P
    J Membr Biol; 2009 Apr; 228(3):151-64. PubMed ID: 19381710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative contribution of different transmembrane segments to the CFTR chloride channel pore.
    Wang W; El Hiani Y; Rubaiy HN; Linsdell P
    Pflugers Arch; 2014 Mar; 466(3):477-90. PubMed ID: 23955087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
    Zhang J; Hwang TC
    Biochemistry; 2015 Jun; 54(24):3839-50. PubMed ID: 26024338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation.
    Gao X; Bai Y; Hwang TC
    Biophys J; 2013 Feb; 104(4):786-97. PubMed ID: 23442957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the juxtamembrane region of cytoplasmic loop 3 in the gating and conductance of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    Biochemistry; 2012 May; 51(19):3971-81. PubMed ID: 22545782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers.
    Cui G; Song B; Turki HW; McCarty NA
    Pflugers Arch; 2012 Mar; 463(3):405-18. PubMed ID: 22160394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate.
    Li MS; Demsey AF; Qi J; Linsdell P
    Br J Pharmacol; 2009 Jul; 157(6):1065-71. PubMed ID: 19466983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-dependent access of anions to the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Fatehi M; Linsdell P
    J Biol Chem; 2008 Mar; 283(10):6102-9. PubMed ID: 18167343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore.
    Zhou JJ; Li MS; Qi J; Linsdell P
    J Gen Physiol; 2010 Mar; 135(3):229-45. PubMed ID: 20142516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore.
    Negoda A; Hogan MS; Cowley EA; Linsdell P
    Cell Mol Life Sci; 2019 Jun; 76(12):2411-2423. PubMed ID: 30758641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine substitutions reveal dual functions of the amino-terminal tail in cystic fibrosis transmembrane conductance regulator channel gating.
    Fu J; Kirk KL
    J Biol Chem; 2001 Sep; 276(38):35660-8. PubMed ID: 11468285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH
    Biochemistry; 1998 Sep; 37(35):12233-40. PubMed ID: 9724537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel.
    Negoda A; El Hiani Y; Cowley EA; Linsdell P
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):1049-1058. PubMed ID: 28235470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2011 Nov; 138(5):495-507. PubMed ID: 22042986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial positioning of CFTR's pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway.
    Gao X; Hwang TC
    J Gen Physiol; 2016 May; 147(5):407-22. PubMed ID: 27114613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway.
    Liu X; Dawson DC
    Biochemistry; 2011 Nov; 50(47):10311-7. PubMed ID: 22014307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.