These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 21796538)
1. Analysis of androgen-induced increase in lipid accumulation in prostate cancer cells. Sikkeland J; Lindstad T; Saatcioglu F Methods Mol Biol; 2011; 776():371-82. PubMed ID: 21796538 [TBL] [Abstract][Full Text] [Related]
2. Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Swinnen JV; Esquenet M; Goossens K; Heyns W; Verhoeven G Cancer Res; 1997 Mar; 57(6):1086-90. PubMed ID: 9067276 [TBL] [Abstract][Full Text] [Related]
3. Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Tamura K; Makino A; Hullin-Matsuda F; Kobayashi T; Furihata M; Chung S; Ashida S; Miki T; Fujioka T; Shuin T; Nakamura Y; Nakagawa H Cancer Res; 2009 Oct; 69(20):8133-40. PubMed ID: 19826053 [TBL] [Abstract][Full Text] [Related]
4. Androgens, lipogenesis and prostate cancer. Swinnen JV; Heemers H; van de Sande T; de Schrijver E; Brusselmans K; Heyns W; Verhoeven G J Steroid Biochem Mol Biol; 2004 Nov; 92(4):273-9. PubMed ID: 15663990 [TBL] [Abstract][Full Text] [Related]
5. KLF5 enhances SREBP-1 action in androgen-dependent induction of fatty acid synthase in prostate cancer cells. Lee MY; Moon JS; Park SW; Koh YK; Ahn YH; Kim KS Biochem J; 2009 Jan; 417(1):313-22. PubMed ID: 18774944 [TBL] [Abstract][Full Text] [Related]
6. Increased lipogenesis in steroid-responsive cancer cells: mechanisms of regulation, role in cancer cell biology and perspectives on clinical applications. Swinnen JV Verh K Acad Geneeskd Belg; 2001; 63(4):321-33. PubMed ID: 11603058 [TBL] [Abstract][Full Text] [Related]
7. [Androgens and increased lipogenesis in prostate cancer. Cell biologic and clinical perspectives]. Verhoeven G Verh K Acad Geneeskd Belg; 2002; 64(3):189-95; discussion 195-6. PubMed ID: 12238242 [TBL] [Abstract][Full Text] [Related]
8. Thiazolidinediones/PPARγ agonists and fatty acid synthase inhibitors as an experimental combination therapy for prostate cancer. Mansour M; Schwartz D; Judd R; Akingbemi B; Braden T; Morrison E; Dennis J; Bartol F; Hazi A; Napier I; Abdel-Mageed AB Int J Oncol; 2011 Feb; 38(2):537-46. PubMed ID: 21170507 [TBL] [Abstract][Full Text] [Related]
9. Establishment and characterization of androgen-independent human prostate cancer cell lines, LN-REC4 and LNCaP-SF, from LNCaP. Iwasa Y; Mizokami A; Miwa S; Koshida K; Namiki M Int J Urol; 2007 Mar; 14(3):233-9. PubMed ID: 17430262 [TBL] [Abstract][Full Text] [Related]
10. Androgens and the control of lipid metabolism in human prostate cancer cells. Swinnen JV; Verhoeven G J Steroid Biochem Mol Biol; 1998 Apr; 65(1-6):191-8. PubMed ID: 9699873 [TBL] [Abstract][Full Text] [Related]
11. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Jin RJ; Wang Y; Masumori N; Ishii K; Tsukamoto T; Shappell SB; Hayward SW; Kasper S; Matusik RJ Cancer Res; 2004 Aug; 64(15):5489-95. PubMed ID: 15289359 [TBL] [Abstract][Full Text] [Related]
12. Methods to assess lipid accumulation in cancer cells. Sikkeland J; Jin Y; Saatcioglu F Methods Enzymol; 2014; 542():407-23. PubMed ID: 24862278 [TBL] [Abstract][Full Text] [Related]
13. GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Rae JM; Johnson MD; Cordero KE; Scheys JO; Larios JM; Gottardis MM; Pienta KJ; Lippman ME Prostate; 2006 Jun; 66(8):886-94. PubMed ID: 16496412 [TBL] [Abstract][Full Text] [Related]
14. Induction of AP-1 activity by androgen activation of the androgen receptor in LNCaP human prostate carcinoma cells. Church DR; Lee E; Thompson TA; Basu HS; Ripple MO; Ariazi EA; Wilding G Prostate; 2005 May; 63(2):155-68. PubMed ID: 15486991 [TBL] [Abstract][Full Text] [Related]
15. Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Moon JS; Jin WJ; Kwak JH; Kim HJ; Yun MJ; Kim JW; Park SW; Kim KS Biochem J; 2011 Jan; 433(1):225-33. PubMed ID: 20958264 [TBL] [Abstract][Full Text] [Related]
16. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Tso CL; McBride WH; Sun J; Patel B; Tsui KH; Paik SH; Gitlitz B; Caliliw R; van Ophoven A; Wu L; deKernion J; Belldegrun A Cancer J; 2000; 6(4):220-33. PubMed ID: 11038142 [TBL] [Abstract][Full Text] [Related]
17. Sex steroid hormone metabolism and prostate cancer. Soronen P; Laiti M; Törn S; Härkönen P; Patrikainen L; Li Y; Pulkka A; Kurkela R; Herrala A; Kaija H; Isomaa V; Vihko P J Steroid Biochem Mol Biol; 2004 Nov; 92(4):281-6. PubMed ID: 15663991 [TBL] [Abstract][Full Text] [Related]
18. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Locke JA; Guns ES; Lubik AA; Adomat HH; Hendy SC; Wood CA; Ettinger SL; Gleave ME; Nelson CC Cancer Res; 2008 Aug; 68(15):6407-15. PubMed ID: 18676866 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of fatty acid synthase activity in prostate cancer cells by dutasteride. Schmidt LJ; Ballman KV; Tindall DJ Prostate; 2007 Jul; 67(10):1111-20. PubMed ID: 17477363 [TBL] [Abstract][Full Text] [Related]
20. A novel androgen-regulated gene, PMEPA1, located on chromosome 20q13 exhibits high level expression in prostate. Xu LL; Shanmugam N; Segawa T; Sesterhenn IA; McLeod DG; Moul JW; Srivastava S Genomics; 2000 Jun; 66(3):257-63. PubMed ID: 10873380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]