BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21796617)

  • 1. Myosin heavy chain is not selectively decreased in murine cancer cachexia.
    Cosper PF; Leinwand LA
    Int J Cancer; 2012 Jun; 130(11):2722-7. PubMed ID: 21796617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered expression of skeletal muscle myosin isoforms in cancer cachexia.
    Diffee GM; Kalfas K; Al-Majid S; McCarthy DO
    Am J Physiol Cell Physiol; 2002 Nov; 283(5):C1376-82. PubMed ID: 12372798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products.
    Acharyya S; Ladner KJ; Nelsen LL; Damrauer J; Reiser PJ; Swoap S; Guttridge DC
    J Clin Invest; 2004 Aug; 114(3):370-8. PubMed ID: 15286803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting.
    Shum AM; Mahendradatta T; Taylor RJ; Painter AB; Moore MM; Tsoli M; Tan TC; Clarke SJ; Robertson GR; Polly P
    Aging (Albany NY); 2012 Feb; 4(2):133-43. PubMed ID: 22361433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UBR2 targets myosin heavy chain IIb and IIx for degradation: Molecular mechanism essential for cancer-induced muscle wasting.
    Gao S; Zhang G; Zhang Z; Zhu JZ; Li L; Zhou Y; Rodney GG; Abo-Zahrah RS; Anderson L; Garcia JM; Kwon YT; Li YP
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2200215119. PubMed ID: 36252004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle.
    Wang G; Biswas AK; Ma W; Kandpal M; Coker C; Grandgenett PM; Hollingsworth MA; Jain R; Tanji K; Lόpez-Pintado S; Borczuk A; Hebert D; Jenkitkasemwong S; Hojyo S; Davuluri RV; Knutson MD; Fukada T; Acharyya S
    Nat Med; 2018 Jun; 24(6):770-781. PubMed ID: 29875463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in nucleic acid and protein levels in atrophying skeletal muscle in cancer cachexia.
    Bhogal AS; Lorite ML; Tisdale MJ
    Anticancer Res; 2006; 26(6B):4149-54. PubMed ID: 17201126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling pathways perturbing muscle mass.
    Glass DJ
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):225-9. PubMed ID: 20397318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia.
    Smith KL; Tisdale MJ
    Br J Cancer; 1993 Apr; 67(4):680-5. PubMed ID: 8471425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metalloproteinase expression is altered in cardiac and skeletal muscle in cancer cachexia.
    Devine RD; Bicer S; Reiser PJ; Velten M; Wold LE
    Am J Physiol Heart Circ Physiol; 2015 Aug; 309(4):H685-91. PubMed ID: 26092976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a preferential myosin loss on Ca2+ activation of force generation in single human skeletal muscle fibres.
    Ochala J; Larsson L
    Exp Physiol; 2008 Apr; 93(4):486-95. PubMed ID: 18245202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle oxidative capacity during IL-6-dependent cancer cachexia.
    White JP; Baltgalvis KA; Puppa MJ; Sato S; Baynes JW; Carson JA
    Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R201-11. PubMed ID: 21148472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leucine induces myofibrillar protein accretion in cultured skeletal muscle through mTOR dependent and -independent control of myosin heavy chain mRNA levels.
    Haegens A; Schols AM; van Essen AL; van Loon LJ; Langen RC
    Mol Nutr Food Res; 2012 May; 56(5):741-52. PubMed ID: 22648621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic derangements of skeletal muscle from a murine model of glioma cachexia.
    Cui P; Shao W; Huang C; Wu CJ; Jiang B; Lin D
    Skelet Muscle; 2019 Jan; 9(1):3. PubMed ID: 30635036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of SETD7 Methyltransferase by SENP3 Is Crucial for Sarcomere Organization and Cachexia.
    Nayak A; Lopez-Davila AJ; Kefalakes E; Holler T; Kraft T; Amrute-Nayak M
    Cell Rep; 2019 May; 27(9):2725-2736.e4. PubMed ID: 31141694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imperatorin alleviates cancer cachexia and prevents muscle wasting via directly inhibiting STAT3.
    Chen L; Xu W; Yang Q; Zhang H; Wan L; Xin B; Zhang J; Guo C
    Pharmacol Res; 2020 Aug; 158():104871. PubMed ID: 32413482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.
    Quan-Jun Y; Yan H; Yong-Long H; Li-Li W; Jie L; Jin-Lu H; Jin L; Peng-Guo C; Run G; Cheng G
    Mol Cancer Ther; 2017 Feb; 16(2):334-343. PubMed ID: 27599525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an UPLC mass spectrometry method for measurement of myofibrillar protein synthesis: application to analysis of murine muscles during cancer cachexia.
    Lima M; Sato S; Enos RT; Baynes JW; Carson JA
    J Appl Physiol (1985); 2013 Mar; 114(6):824-8. PubMed ID: 23329823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleavage of caspases-1, -3, -6, -8 and -9 substrates by proteases in skeletal muscles from mice undergoing cancer cachexia.
    Belizário JE; Lorite MJ; Tisdale MJ
    Br J Cancer; 2001 Apr; 84(8):1135-40. PubMed ID: 11308266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new model of cancer cachexia: contribution of the ubiquitin-proteasome pathway.
    Lazarus DD; Destree AT; Mazzola LM; McCormack TA; Dick LR; Xu B; Huang JQ; Pierce JW; Read MA; Coggins MB; Solomon V; Goldberg AL; Brand SJ; Elliott PJ
    Am J Physiol; 1999 Aug; 277(2):E332-41. PubMed ID: 10444430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.