These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21796770)

  • 1. Including ecotoxic impacts on warm-blooded predators in life cycle impact assessment.
    Golsteijn L; van Zelm R; Veltman K; Musters G; Hendriks AJ; Huijbregts MA
    Integr Environ Assess Manag; 2012 Apr; 8(2):372-8. PubMed ID: 21796770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment.
    Huijbregts MA; Struijs J; Goedkoop M; Heijungs R; Jan Hendriks A; van de Meent D
    Chemosphere; 2005 Dec; 61(10):1495-504. PubMed ID: 15964049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases.
    van Zelm R; Stam G; Huijbregts MA; van de Meent D
    Chemosphere; 2013 Jan; 90(2):312-7. PubMed ID: 22884491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle toxicity assessment of pesticides used in integrated and organic production of oranges in the Comunidad Valenciana, Spain.
    Juraske R; Sanjuán N
    Chemosphere; 2011 Feb; 82(7):956-62. PubMed ID: 21075421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the relevance of seasonal differentiation of human health intake fractions in life cycle assessment.
    Manneh R; Margni M; Deschênes L
    Integr Environ Assess Manag; 2012 Oct; 8(4):749-59. PubMed ID: 22488822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccumulation of organic contaminants in humans: a multimedia perspective and the importance of biotransformation.
    McLachlan MS; Czub G; MacLeod M; Arnot JA
    Environ Sci Technol; 2011 Jan; 45(1):197-202. PubMed ID: 20701275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of geographic variability on Comparative Toxicity Potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions.
    Gandhi N; Huijbregts MA; Meent Dv; Peijnenburg WJ; Guinée J; Diamond ML
    Chemosphere; 2011 Jan; 82(2):268-77. PubMed ID: 20934738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geographical scenario uncertainty in generic fate and exposure factors of toxic pollutants for life-cycle impact assessment.
    Huijbregts MA; Lundi S; McKone TE; van de Meent D
    Chemosphere; 2003 May; 51(6):501-8. PubMed ID: 12615102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. I. Model description and uncertainty analysis.
    Traas TP; Luttik R; Jongbloed RH
    Ecotoxicol Environ Saf; 1996 Aug; 34(3):264-78. PubMed ID: 8812195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.
    Hanafiah MM; Xenopoulos MA; Pfister S; Leuven RS; Huijbregts MA
    Environ Sci Technol; 2011 Jun; 45(12):5272-8. PubMed ID: 21574555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment and management of risk to wildlife from cadmium.
    Burger J
    Sci Total Environ; 2008 Jan; 389(1):37-45. PubMed ID: 17910979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling exposure to persistent chemicals in hazard and risk assessment.
    Cowan-Ellsberry CE; McLachlan MS; Arnot JA; Macleod M; McKone TE; Wania F
    Integr Environ Assess Manag; 2009 Oct; 5(4):662-79. PubMed ID: 19552503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation products in the life cycle impact assessment of chemicals.
    van Zelm R; Huijbregts MA; van de Meent D
    Environ Sci Technol; 2010 Feb; 44(3):1004-9. PubMed ID: 20050654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc.
    Gandhi N; Diamond ML; van de Meent D; Huijbregts MA; Peijnenburg WJ; Guinée J
    Environ Sci Technol; 2010 Jul; 44(13):5195-201. PubMed ID: 20536257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish.
    Letcher RJ; Bustnes JO; Dietz R; Jenssen BM; Jørgensen EH; Sonne C; Verreault J; Vijayan MM; Gabrielsen GW
    Sci Total Environ; 2010 Jul; 408(15):2995-3043. PubMed ID: 19910021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodology for ecosystem-scale modeling of selenium.
    Presser TS; Luoma SN
    Integr Environ Assess Manag; 2010 Oct; 6(4):685-710. PubMed ID: 20872649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An environmental fate, exposure and risk assessment of ethylene oxide from diffuse emissions.
    Staples CA; Gulledge W
    Chemosphere; 2006 Oct; 65(4):691-8. PubMed ID: 16516948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility of human populations to environmental exposure to organic contaminants.
    Undeman E; Brown TN; Wania F; McLachlan MS
    Environ Sci Technol; 2010 Aug; 44(16):6249-55. PubMed ID: 20704223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing regional intake fractions in North America.
    Humbert S; Manneh R; Shaked S; Wannaz C; Horvath A; Deschênes L; Jolliet O; Margni M
    Sci Total Environ; 2009 Aug; 407(17):4812-20. PubMed ID: 19535129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.