These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 21797219)
1. Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement. Li S; Xiao M; Zheng A; Xiao H Biomacromolecules; 2011 Sep; 12(9):3305-12. PubMed ID: 21797219 [TBL] [Abstract][Full Text] [Related]
2. Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Liu PS; Chen Q; Liu X; Yuan B; Wu SS; Shen J; Lin SC Biomacromolecules; 2009 Oct; 10(10):2809-16. PubMed ID: 19743844 [TBL] [Abstract][Full Text] [Related]
3. Enhancing oil-sorption performance of polypropylene fiber by surface modification via UV-induced graft polymerization of butyl acrylate. Li S; Wei J; Wang A; Nie Y; Yang H; Wang L; Zhou B Water Sci Technol; 2012; 66(12):2647-52. PubMed ID: 23109581 [TBL] [Abstract][Full Text] [Related]
4. Effect of Reaction Media on Grafting Hydrophobic Polymers from Cellulose Nanocrystals Kiriakou MV; Berry RM; Hoare T; Cranston ED Biomacromolecules; 2021 Aug; 22(8):3601-3612. PubMed ID: 34252279 [TBL] [Abstract][Full Text] [Related]
5. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Wang M; Yuan J; Huang X; Cai X; Li L; Shen J Colloids Surf B Biointerfaces; 2013 Mar; 103():52-8. PubMed ID: 23201719 [TBL] [Abstract][Full Text] [Related]
6. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils. Navarro JRG; Edlund U Biomacromolecules; 2017 Jun; 18(6):1947-1955. PubMed ID: 28482654 [TBL] [Abstract][Full Text] [Related]
7. Plasma-induced polymerization for enhancing paper hydrophobicity. Song Z; Tang J; Li J; Xiao H Carbohydr Polym; 2013 Jan; 92(1):928-33. PubMed ID: 23218385 [TBL] [Abstract][Full Text] [Related]
8. Phase behavior of poly(sulfobetaine methacrylate)-grafted silica nanoparticles and their stability in protein solutions. Dong Z; Mao J; Yang M; Wang D; Bo S; Ji X Langmuir; 2011 Dec; 27(24):15282-91. PubMed ID: 22124164 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization. Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007 [TBL] [Abstract][Full Text] [Related]
10. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Huang J; Murata H; Koepsel RR; Russell AJ; Matyjaszewski K Biomacromolecules; 2007 May; 8(5):1396-9. PubMed ID: 17417906 [TBL] [Abstract][Full Text] [Related]
11. Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Fumagalli M; Ouhab D; Boisseau SM; Heux L Biomacromolecules; 2013 Sep; 14(9):3246-55. PubMed ID: 23889256 [TBL] [Abstract][Full Text] [Related]
12. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Ljungberg N; Bonini C; Bortolussi F; Boisson C; Heux L; Cavaillé JY Biomacromolecules; 2005; 6(5):2732-9. PubMed ID: 16153113 [TBL] [Abstract][Full Text] [Related]
13. Modification of jute fibers with polystyrene via atom transfer radical polymerization. Plackett D; Jankova K; Egsgaard H; Hvilsted S Biomacromolecules; 2005; 6(5):2474-84. PubMed ID: 16153083 [TBL] [Abstract][Full Text] [Related]
14. Effect of adhesive on the morphology and mechanical properties of electrospun fibrous mat of cellulose acetate. Baek WI; Pant HR; Nam KT; Nirmala R; Oh HJ; Kim I; Kim HY Carbohydr Res; 2011 Sep; 346(13):1956-61. PubMed ID: 21718972 [TBL] [Abstract][Full Text] [Related]
15. Grafting efficiency of synthetic polymers onto biomaterials: a comparative study of grafting-from versus grafting-to. Hansson S; Trouillet V; Tischer T; Goldmann AS; Carlmark A; Barner-Kowollik C; Malmström E Biomacromolecules; 2013 Jan; 14(1):64-74. PubMed ID: 23043441 [TBL] [Abstract][Full Text] [Related]
16. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP. Wang Y; Xiao Y; Huang X; Lang M J Colloid Interface Sci; 2011 Aug; 360(2):415-21. PubMed ID: 21601216 [TBL] [Abstract][Full Text] [Related]
17. Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution. Wei YT; Zheng YM; Chen JP Langmuir; 2011 May; 27(10):6018-25. PubMed ID: 21510669 [TBL] [Abstract][Full Text] [Related]
18. Surface modification of PDMS by surface-initiated atom transfer radical polymerization of water-soluble dendronized PEG methacrylate. Zhang Z; Wang J; Tu Q; Nie N; Sha J; Liu W; Liu R; Zhang Y; Wang J Colloids Surf B Biointerfaces; 2011 Nov; 88(1):85-92. PubMed ID: 21752608 [TBL] [Abstract][Full Text] [Related]
19. Preparation of a thermoresponsive lignin-based biomaterial through atom transfer radical polymerization. Kim YS; Kadla JF Biomacromolecules; 2010 Apr; 11(4):981-8. PubMed ID: 20187613 [TBL] [Abstract][Full Text] [Related]
20. ATRP grafting from cellulose fibers to create block-copolymer grafts. Carlmark A; Malmström EE Biomacromolecules; 2003; 4(6):1740-5. PubMed ID: 14606904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]