BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21797227)

  • 1. Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo.
    Bright RM; Strømman AH; Peters GP
    Environ Sci Technol; 2011 Sep; 45(17):7570-80. PubMed ID: 21797227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo.
    Betts RA
    Nature; 2000 Nov; 408(6809):187-90. PubMed ID: 11089969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.
    de Wit HA; Bryn A; Hofgaard A; Karstensen J; Kvalevåg MM; Peters GP
    Glob Chang Biol; 2014 Jul; 20(7):2344-55. PubMed ID: 24343906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-equivalent metrics for albedo changes in land management contexts: relevance of the time dimension.
    Bright RM; Bogren W; Bernier P; Astrup R
    Ecol Appl; 2016 Sep; 26(6):1868-1880. PubMed ID: 27755703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.
    Bright RM; Antón-Fernández C; Astrup R; Cherubini F; Kvalevåg M; Strømman AH
    Glob Chang Biol; 2014 Feb; 20(2):607-21. PubMed ID: 24277242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forests and climate change: forcings, feedbacks, and the climate benefits of forests.
    Bonan GB
    Science; 2008 Jun; 320(5882):1444-9. PubMed ID: 18556546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of boreal forest fire on climate warming.
    Randerson JT; Liu H; Flanner MG; Chambers SD; Jin Y; Hess PG; Pfister G; Mack MC; Treseder KK; Welp LR; Chapin FS; Harden JW; Goulden ML; Lyons E; Neff JC; Schuur EA; Zender CS
    Science; 2006 Nov; 314(5802):1130-2. PubMed ID: 17110574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boreal forests, aerosols and the impacts on clouds and climate.
    Spracklen DV; Bonn B; Carslaw KS
    Philos Trans A Math Phys Eng Sci; 2008 Dec; 366(1885):4613-26. PubMed ID: 18826917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the climate-change consequences of shifting land use between forest and agriculture.
    Kirschbaum MU; Saggar S; Tate KR; Thakur KP; Giltrap DL
    Sci Total Environ; 2013 Nov; 465():314-24. PubMed ID: 23419358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation budget changes with dry forest clearing in temperate Argentina.
    Houspanossian J; Nosetto M; Jobbágy EG
    Glob Chang Biol; 2013 Apr; 19(4):1211-22. PubMed ID: 23504897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change decreases the cooling effect from postfire albedo in boreal North America.
    Potter S; Solvik K; Erb A; Goetz SJ; Johnstone JF; Mack MC; Randerson JT; Román MO; Schaaf CL; Turetsky MR; Veraverbeke S; Walker XJ; Wang Z; Massey R; Rogers BM
    Glob Chang Biol; 2020 Mar; 26(3):1592-1607. PubMed ID: 31658411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of emissions timing in biofuel greenhouse gases and climate impacts.
    Schwietzke S; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Oct; 45(19):8197-203. PubMed ID: 21866889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fire as the dominant driver of central Canadian boreal forest carbon balance.
    Bond-Lamberty B; Peckham SD; Ahl DE; Gower ST
    Nature; 2007 Nov; 450(7166):89-92. PubMed ID: 17972883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human footprint in the carbon cycle of temperate and boreal forests.
    Magnani F; Mencuccini M; Borghetti M; Berbigier P; Berninger F; Delzon S; Grelle A; Hari P; Jarvis PG; Kolari P; Kowalski AS; Lankreijer H; Law BE; Lindroth A; Loustau D; Manca G; Moncrieff JB; Rayment M; Tedeschi V; Valentini R; Grace J
    Nature; 2007 Jun; 447(7146):848-50. PubMed ID: 17568744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests.
    Arneth A; Schurgers G; Hickler T; Miller PA
    Plant Biol (Stuttg); 2008 Jan; 10(1):150-62. PubMed ID: 17682966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect emissions from biofuels: how important?
    Melillo JM; Reilly JM; Kicklighter DW; Gurgel AC; Cronin TW; Paltsev S; Felzer BS; Wang X; Sokolov AP; Schlosser CA
    Science; 2009 Dec; 326(5958):1397-9. PubMed ID: 19933101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.
    Mullins KA; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Jan; 45(1):132-8. PubMed ID: 21121672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trade-offs between three forest ecosystem services across the state of New Hampshire, USA: timber, carbon, and albedo.
    Lutz DA; Burakowski EA; Murphy MB; Borsuk ME; Niemiec RM; Howarth RB
    Ecol Appl; 2016 Jan; 26(1):146-61. PubMed ID: 27039516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes.
    Thom D; Rammer W; Seidl R
    Ecol Monogr; 2017 Nov; 87(4):665-684. PubMed ID: 29628526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.
    Wang T; Peng S; Krinner G; Ryder J; Li Y; Dantec-Nédélec S; Ottlé C
    PLoS One; 2015; 10(9):e0137275. PubMed ID: 26366564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.