These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21797312)

  • 1. Time-averaged quadratic functionals of a Gaussian process.
    Grebenkov DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061117. PubMed ID: 21797312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical solution of the generalized Langevin equation with hydrodynamic interactions: subdiffusion of heavy tracers.
    Grebenkov DS; Vahabi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012130. PubMed ID: 24580195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal and suboptimal quadratic forms for noncentered Gaussian processes.
    Grebenkov DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032140. PubMed ID: 24125246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probability distribution of the time-averaged mean-square displacement of a Gaussian process.
    Grebenkov DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031124. PubMed ID: 22060345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.
    Jeon JH; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuation analysis of time-averaged mean-square displacement for the Langevin equation with time-dependent and fluctuating diffusivity.
    Uneyama T; Miyaguchi T; Akimoto T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032140. PubMed ID: 26465459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TIME-DOMAIN METHODS FOR DIFFUSIVE TRANSPORT IN SOFT MATTER.
    Fricks J; Yao L; Elston TC; Gregory Forest AM
    SIAM J Appl Math; 2009; 69(5):1277-1308. PubMed ID: 26412904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity.
    Cherstvy AG; Chechkin AV; Metzler R
    Soft Matter; 2014 Mar; 10(10):1591-601. PubMed ID: 24652104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the interpretation of stochastic calculus in systems with cross-correlated Gaussian white noises.
    Méndez V; Denisov SI; Campos D; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012116. PubMed ID: 25122260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster.
    Mardoukhi Y; Jeon JH; Metzler R
    Phys Chem Chem Phys; 2015 Nov; 17(44):30134-47. PubMed ID: 26503611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation.
    Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R
    Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.
    Indei T; Schieber JD; Córdoba A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041504. PubMed ID: 22680480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical properties of the anomalous scaling exponent estimator based on time-averaged mean-square displacement.
    Sikora G; Teuerle M; Wyłomańska A; Grebenkov D
    Phys Rev E; 2017 Aug; 96(2-1):022132. PubMed ID: 28950534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributional behaviors of time-averaged observables in the Langevin equation with fluctuating diffusivity: Normal diffusion but anomalous fluctuations.
    Akimoto T; Yamamoto E
    Phys Rev E; 2016 Jun; 93(6):062109. PubMed ID: 27415210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking.
    Burov S; Jeon JH; Metzler R; Barkai E
    Phys Chem Chem Phys; 2011 Feb; 13(5):1800-12. PubMed ID: 21203639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function.
    Despósito MA; Viñales AD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021111. PubMed ID: 19792081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Langevin equation with fluctuating diffusivity: A two-state model.
    Miyaguchi T; Akimoto T; Yamamoto E
    Phys Rev E; 2016 Jul; 94(1-1):012109. PubMed ID: 27575079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distributions of diffusion measures from a local mean-square displacement analysis.
    Nandi A; Heinrich D; Lindner B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021926. PubMed ID: 23005804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking.
    Metzler R; Jeon JH; Cherstvy AG; Barkai E
    Phys Chem Chem Phys; 2014 Nov; 16(44):24128-64. PubMed ID: 25297814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid heterogeneity detection based on the asymptotic distribution of the time-averaged mean squared displacement in single particle tracking experiments.
    Zhang K; Crizer KPR; Schoenfisch MH; Hill DB; Didier G
    J Phys A Math Theor; 2018 Nov; 51(44):. PubMed ID: 31037119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.