These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 21797312)
21. Elucidating fluctuating diffusivity in center-of-mass motion of polymer models with time-averaged mean-square-displacement tensor. Miyaguchi T Phys Rev E; 2017 Oct; 96(4-1):042501. PubMed ID: 29347492 [TBL] [Abstract][Full Text] [Related]
22. Transient aging in fractional Brownian and Langevin-equation motion. Kursawe J; Schulz J; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062124. PubMed ID: 24483403 [TBL] [Abstract][Full Text] [Related]
23. On the non-stationary generalized Langevin equation. Meyer H; Voigtmann T; Schilling T J Chem Phys; 2017 Dec; 147(21):214110. PubMed ID: 29221405 [TBL] [Abstract][Full Text] [Related]
24. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model. Schurr JM; Fujimoto BS; Diaz R; Robinson BH J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047 [TBL] [Abstract][Full Text] [Related]
25. A stochastic analysis of a Brownian ratchet model for actin-based motility. Qian H Mech Chem Biosyst; 2004 Dec; 1(4):267-78. PubMed ID: 16783923 [TBL] [Abstract][Full Text] [Related]
26. Subdiffusion in time-averaged, confined random walks. Neusius T; Sokolov IM; Smith JC Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011109. PubMed ID: 19658655 [TBL] [Abstract][Full Text] [Related]
27. Large-deviation properties of Brownian motion with dry friction. Chen Y; Just W Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042102. PubMed ID: 25375433 [TBL] [Abstract][Full Text] [Related]
28. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments. Kepten E; Weron A; Sikora G; Burnecki K; Garini Y PLoS One; 2015; 10(2):e0117722. PubMed ID: 25680069 [TBL] [Abstract][Full Text] [Related]
29. Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium. Grebenkov DS; Vahabi M; Bertseva E; Forró L; Jeney S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):040701. PubMed ID: 24229100 [TBL] [Abstract][Full Text] [Related]
31. Influence of molecular motors on the motion of particles in viscoelastic media. Bouzat S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062707. PubMed ID: 25019814 [TBL] [Abstract][Full Text] [Related]
33. Particle dynamics in two-dimensional random-energy landscapes: experiments and simulations. Evers F; Zunke C; Hanes RD; Bewerunge J; Ladadwa I; Heuer A; Egelhaaf SU Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022125. PubMed ID: 24032793 [TBL] [Abstract][Full Text] [Related]
34. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. Cherstvy AG; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012134. PubMed ID: 25122278 [TBL] [Abstract][Full Text] [Related]
35. Mean-squared-displacement statistical test for fractional Brownian motion. Sikora G; Burnecki K; Wyłomańska A Phys Rev E; 2017 Mar; 95(3-1):032110. PubMed ID: 28415337 [TBL] [Abstract][Full Text] [Related]
36. How the number of fitting points for the slope of the mean-square displacement influences the experimentally determined particle size distribution from single-particle tracking. Ernst D; Köhler J Phys Chem Chem Phys; 2013 Mar; 15(10):3429-32. PubMed ID: 23381508 [TBL] [Abstract][Full Text] [Related]