These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21797376)

  • 1. Effect of molecular film thickness on thermal conduction across solid-film interfaces.
    Liang Z; Tsai HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061603. PubMed ID: 21797376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of thin film confined between two dissimilar solids on interfacial thermal resistance.
    Liang Z; Tsai HL
    J Phys Condens Matter; 2011 Dec; 23(49):495303. PubMed ID: 22109825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal transport across a substrate-thin-film interface: effects of film thickness and surface roughness.
    Liang Z; Sasikumar K; Keblinski P
    Phys Rev Lett; 2014 Aug; 113(6):065901. PubMed ID: 25148335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity of interfacial layers in nanofluids.
    Liang Z; Tsai HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041602. PubMed ID: 21599170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thickness-Independent Vibrational Thermal Conductance across Confined Solid-Solution Thin Films.
    Giri A; Cheaito R; Gaskins JT; Mimura T; Brown-Shaklee HJ; Medlin DL; Ihlefeld JF; Hopkins PE
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12541-12549. PubMed ID: 33663216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces.
    Liang Z; Evans W; Keblinski P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022119. PubMed ID: 23496472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.
    Hannah DC; Gezelter JD; Schaller RD; Schatz GC
    ACS Nano; 2015 Jun; 9(6):6278-87. PubMed ID: 26020654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of thermal phenomena in an ultrathin liquid film sheared between solid surfaces: the influence of the crystal plane on energy and momentum transfer at solid-liquid interfaces.
    Ohara T; Torii D
    J Chem Phys; 2005 Jun; 122(21):214717. PubMed ID: 15974772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering.
    Wang H; Gong J; Pei Y; Xu Z
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2599-603. PubMed ID: 23465732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deconstructing Temperature Gradients across Fluid Interfaces: The Structural Origin of the Thermal Resistance of Liquid-Vapor Interfaces.
    Muscatello J; Chacón E; Tarazona P; Bresme F
    Phys Rev Lett; 2017 Jul; 119(4):045901. PubMed ID: 29341757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thickness, composition, and molecular structure of residual thin films formed by forced dewetting of Ag from glycerol/D₂O solutions.
    Pemberton JE; Mudalige A; Yoo H
    Langmuir; 2014 Dec; 30(50):15181-92. PubMed ID: 25453908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transition broadening due to interfacial premelting: a new quantitative access to intermolecular interactions within submonolayer films at solid/vapor interfaces.
    Mutihac RC; Riegler H
    Langmuir; 2010 May; 26(9):6394-9. PubMed ID: 20420462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous dynamics of ionic liquids in confined films with varied film thickness.
    Wang YL; Lu ZY; Laaksonen A
    Phys Chem Chem Phys; 2014 Oct; 16(38):20731-40. PubMed ID: 25162673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength.
    Ge T; Robbins MO; Perahia D; Grest GS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012602. PubMed ID: 25122327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thickness-dependent structural arrangement in nano-confined imidazolium-based ionic liquid films.
    Rouha M; Cummings PT
    Phys Chem Chem Phys; 2015 Feb; 17(6):4152-9. PubMed ID: 25563888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local thermal transport of liquid alkanes in the vicinity of α-quartz solid surfaces and thermal resistance over the interfaces: A molecular dynamics study.
    Chilukoti HK; Kikugawa G; Shibahara M; Ohara T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052404. PubMed ID: 26066180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of film thickness and molecular weight on the interfacial dynamics of atactic poly(methyl methacrylate).
    Freedman MA; Becker JS; Sibener SJ
    J Phys Chem B; 2008 Dec; 112(50):16090-6. PubMed ID: 19367795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of hydration force and elastic strain energy on the stability of solid film in a very thin solid-on-liquid structure.
    Yang CY; Zhao YP
    J Chem Phys; 2004 Mar; 120(11):5366-76. PubMed ID: 15267410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.