BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21797405)

  • 1. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models.
    Aoi S; Yamashita T; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061909. PubMed ID: 21797405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion.
    Aoi S; Katayama D; Fujiki S; Tomita N; Funato T; Yamashita T; Senda K; Tsuchiya K
    J R Soc Interface; 2013 Apr; 10(81):20120908. PubMed ID: 23389894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hysteresis in the metachronal-tripod gait transition of insects: a modeling study.
    Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012717. PubMed ID: 23944500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body torsional flexibility effects on stability during trotting and pacing based on a simple analytical model.
    Adachi M; Aoi S; Kamimura T; Tsuchiya K; Matsuno F
    Bioinspir Biomim; 2020 Jul; 15(5):055001. PubMed ID: 32454464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of adaptive behavior in quadruped locomotion.
    Ito S; Yuasa H; Luo ZW; Ito M; Yanagihara D
    Biol Cybern; 1998 May; 78(5):337-47. PubMed ID: 9691263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjustments of global and local hindlimb properties during terrestrial locomotion of the common quail (Coturnix coturnix).
    Andrada E; Nyakatura JA; Bergmann F; Blickhan R
    J Exp Biol; 2013 Oct; 216(Pt 20):3906-16. PubMed ID: 23868846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.
    Fukuoka Y; Fukino K; Habu Y; Mori Y
    Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy comparison between trot, bound, and gallop using a simple model.
    Nanua P; Waldron KJ
    J Biomech Eng; 1995 Nov; 117(4):466-73. PubMed ID: 8748530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A galloping quadruped model using left-right asymmetry in touchdown angles.
    Tanase M; Ambe Y; Aoi S; Matsuno F
    J Biomech; 2015 Sep; 48(12):3383-9. PubMed ID: 26216144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of aperiodic bipedal sprinting.
    Celik H; Piazza SJ
    J Biomech Eng; 2013 Aug; 135(8):81008. PubMed ID: 23722442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive locomotion: Investigation and modeling of physically-paired humans while walking.
    Lanini J; Duburcq A; Razavi H; Le Goff CG; Ijspeert AJ
    PLoS One; 2017; 12(9):e0179989. PubMed ID: 28877161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation, absorption, and transfer of mechanical energy during walking in children.
    Umberger BR; Augsburger S; Resig J; Oeffinger D; Shapiro R; Tylkowski C
    Med Eng Phys; 2013 May; 35(5):644-51. PubMed ID: 22885224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models of central pattern generators for quadruped locomotion. I. Primary gaits.
    Buono PL; Golubitsky M
    J Math Biol; 2001 Apr; 42(4):291-326. PubMed ID: 11374122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment.
    Taga G; Yamaguchi Y; Shimizu H
    Biol Cybern; 1991; 65(3):147-59. PubMed ID: 1912008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromechanical control of locomotion in the rat.
    Thota AK; Watson SC; Knapp E; Thompson B; Jung R
    J Neurotrauma; 2005 Apr; 22(4):442-65. PubMed ID: 15853462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Models of central pattern generators for quadruped locomotion. II. Secondary gaits.
    Buono PL
    J Math Biol; 2001 Apr; 42(4):327-46. PubMed ID: 11374123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.