These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 21797465)
21. Geometry and topology of escape. I. Epistrophes. Mitchell KA; Handley JP; Tighe B; Delos JB; Knudson SK Chaos; 2003 Sep; 13(3):880-91. PubMed ID: 12946180 [TBL] [Abstract][Full Text] [Related]
22. Moving finite-size particles in a flow: a physical example of pitchfork bifurcations of tori. Zahnow JC; Feudel U Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026215. PubMed ID: 18352111 [TBL] [Abstract][Full Text] [Related]
23. Escape dynamics of coupled particles in nonlinear, disordered lattices. Manski K; Hennig D Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051109. PubMed ID: 20364949 [TBL] [Abstract][Full Text] [Related]
24. Persistence of a Brownian particle in a time-dependent potential. Chakraborty D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051101. PubMed ID: 23004697 [TBL] [Abstract][Full Text] [Related]
25. Weakly noisy chaotic scattering. Bernal JD; Seoane JM; Sanjuán MA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032914. PubMed ID: 24125332 [TBL] [Abstract][Full Text] [Related]
26. Effects of periodic forcing in chaotic scattering. Blesa F; Seoane JM; Barrio R; Sanjuán MA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042909. PubMed ID: 24827315 [TBL] [Abstract][Full Text] [Related]
27. Finding critical exponents for two-dimensional Hamiltonian maps. de Oliveira JA; Bizão RA; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046212. PubMed ID: 20481812 [TBL] [Abstract][Full Text] [Related]
28. Semiclassical accuracy in phase space for regular and chaotic dynamics. Kaplan L Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026223. PubMed ID: 15447581 [TBL] [Abstract][Full Text] [Related]
29. Survival of interacting Brownian particles in crowded one-dimensional environment. Ryabov A; Chvosta P J Chem Phys; 2012 Feb; 136(6):064114. PubMed ID: 22360176 [TBL] [Abstract][Full Text] [Related]
30. Transition from normal to ballistic diffusion in a one-dimensional impact system. Livorati ALP; Kroetz T; Dettmann CP; Caldas IL; Leonel ED Phys Rev E; 2018 Mar; 97(3-1):032205. PubMed ID: 29776143 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional billiards: Visualization of regular structures and trapping of chaotic trajectories. Firmbach M; Lange S; Ketzmerick R; Bäcker A Phys Rev E; 2018 Aug; 98(2-1):022214. PubMed ID: 30253550 [TBL] [Abstract][Full Text] [Related]
32. Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard. Livorati AL; Caldas IL; Leonel ED Chaos; 2012 Jun; 22(2):026122. PubMed ID: 22757581 [TBL] [Abstract][Full Text] [Related]
33. Theory of correlated two-particle activated glassy dynamics: general formulation and heterogeneous structural relaxation in hard sphere fluids. Sussman DM; Schweizer KS J Chem Phys; 2011 Feb; 134(6):064516. PubMed ID: 21322714 [TBL] [Abstract][Full Text] [Related]
35. Chaotic properties of a time-modulated barrier. Leonel ED; McClintock PV Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016214. PubMed ID: 15324159 [TBL] [Abstract][Full Text] [Related]
36. Diffusion and escape times in the open-leaky standard map. Lugosi L; Kovács T Phys Rev E; 2020 Oct; 102(4-1):042202. PubMed ID: 33212712 [TBL] [Abstract][Full Text] [Related]
37. Crisis induced by an escape from a fat strange set. He Y; Jiang YM; Shen Y; He DR Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056213. PubMed ID: 15600734 [TBL] [Abstract][Full Text] [Related]
38. A method of investigation of the evolution of a nonlinear system driven by pulsed noise. Mersov GA; Moiseev SS; Nezlina YM Chaos; 1993 Apr; 3(2):177-182. PubMed ID: 12780026 [TBL] [Abstract][Full Text] [Related]
40. Energy transfer dynamics and thermalization of two oscillators interacting via chaos. Marchiori MA; Fariello R; de Aguiar MA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041119. PubMed ID: 22680431 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]