These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21797560)

  • 1. Magnetoresistance and magnetic ordering fingerprints in hydrogenated graphene.
    Soriano D; Leconte N; Ordejón P; Charlier JC; Palacios JJ; Roche S
    Phys Rev Lett; 2011 Jul; 107(1):016602. PubMed ID: 21797560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetism-dependent transport phenomena in hydrogenated graphene: from spin-splitting to localization effects.
    Leconte N; Soriano D; Roche S; Ordejon P; Charlier JC; Palacios JJ
    ACS Nano; 2011 May; 5(5):3987-92. PubMed ID: 21469688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust ferromagnetism in hydrogenated graphene mediated by spin-polarized pseudospin.
    Kim H; Bang J; Kang J
    Sci Rep; 2018 Sep; 8(1):13940. PubMed ID: 30224827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for Spin Glass Ordering Near the Weak to Strong Localization Transition in Hydrogenated Graphene.
    Matis BR; Houston BH; Baldwin JW
    ACS Nano; 2016 Apr; 10(4):4857-62. PubMed ID: 27064170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin polarization and magnetoresistance through a ferromagnetic barrier in bilayer graphene.
    Cheraghchi H; Adinehvand F
    J Phys Condens Matter; 2012 Feb; 24(4):045303. PubMed ID: 22223564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetism and Interaction-Induced Gap Opening in Graphene with Vacancies or Hydrogen Adatoms: Quantum Monte Carlo Study.
    Ulybyshev MV; Katsnelson MI
    Phys Rev Lett; 2015 Jun; 114(24):246801. PubMed ID: 26196994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning molecular orbitals in molecular electronics and spintronics.
    Kim WY; Kim KS
    Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple quantum phases in graphene with enhanced spin-orbit coupling: from the quantum spin Hall regime to the spin Hall effect and a robust metallic state.
    Cresti A; Van Tuan D; Soriano D; Cummings AW; Roche S
    Phys Rev Lett; 2014 Dec; 113(24):246603. PubMed ID: 25541791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-orbit coupling in hydrogenated graphene.
    Gmitra M; Kochan D; Fabian J
    Phys Rev Lett; 2013 Jun; 110(24):246602. PubMed ID: 25165949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of doping effects on magnetic properties of the hydrogenated and fluorinated graphene structures by extra charge mimic.
    Wang M; Li CM
    Phys Chem Chem Phys; 2013 Mar; 15(11):3786-92. PubMed ID: 23396450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized graphene for high-performance two-dimensional spintronics devices.
    Li L; Qin R; Li H; Yu L; Liu Q; Luo G; Gao Z; Lu J
    ACS Nano; 2011 Apr; 5(4):2601-10. PubMed ID: 21395280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant scattering by realistic impurities in graphene.
    Wehling TO; Yuan S; Lichtenstein AI; Geim AK; Katsnelson MI
    Phys Rev Lett; 2010 Jul; 105(5):056802. PubMed ID: 20867944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic spin transport and spin precession in single graphene layers at room temperature.
    Tombros N; Jozsa C; Popinciuc M; Jonkman HT; van Wees BJ
    Nature; 2007 Aug; 448(7153):571-4. PubMed ID: 17632544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport behavior and negative magnetoresistance in chemically reduced graphene oxide nanofilms.
    Wang SW; Lin HE; Lin HD; Chen KY; Tu KH; Chen CW; Chen JY; Liu CH; Liang CT; Chen YF
    Nanotechnology; 2011 Aug; 22(33):335701. PubMed ID: 21775805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetotransport and current-induced spin transfer torque in a ferromagnetically contacted graphene.
    Zhou B; Chen X; Wang H; Ding KH; Zhou G
    J Phys Condens Matter; 2010 Nov; 22(44):445302. PubMed ID: 21403343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via Birch reduction of graphite oxides.
    Eng AY; Poh HL; Šaněk F; Maryško M; Matějková S; Sofer Z; Pumera M
    ACS Nano; 2013 Jul; 7(7):5930-9. PubMed ID: 23777325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling anisotropic magnetoresistance in layered antiferromagnets.
    Santos DLR; Pinheiro FA; Velev J; Chshiev M; d'Albuquerque E Castro J; Lacroix C
    J Phys Condens Matter; 2017 Jun; 29(23):235302. PubMed ID: 28374683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenated Graphene as a Homoepitaxial Tunnel Barrier for Spin and Charge Transport in Graphene.
    Friedman AL; van 't Erve OM; Robinson JT; Whitener KE; Jonker BT
    ACS Nano; 2015 Jul; 9(7):6747-55. PubMed ID: 26047069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsically Honeycomb-Patterned Hydrogenated Graphene.
    Song Y; Qian K; Tao L; Wang Z; Guo H; Chen H; Zhang S; Zhang YY; Lin X; Pantelides ST; Du S; Gao HJ
    Small; 2022 Jan; 18(4):e2102687. PubMed ID: 34846103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the attachment of ferromagnetic contacts on the conductivity and giant magnetoresistance of graphene nanoribbons.
    Krompiewski S
    Nanotechnology; 2012 Apr; 23(13):135203. PubMed ID: 22418824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.