BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21797643)

  • 1. Cell surface as a fractal: normal and cancerous cervical cells demonstrate different fractal behavior of surface adhesion maps at the nanoscale.
    Dokukin ME; Guz NV; Gaikwad RM; Woodworth CD; Sokolov I
    Phys Rev Lett; 2011 Jul; 107(2):028101. PubMed ID: 21797643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractal properties of biophysical models of pericellular brushes can be used to differentiate between cancerous and normal cervical epithelial cells.
    Hernández Velázquez JD; Mejía-Rosales S; Gama Goicochea A
    Colloids Surf B Biointerfaces; 2018 Oct; 170():572-577. PubMed ID: 29975905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of cancerous cervical cells using physical adhesion of fluorescent silica particles and centripetal force.
    Gaikwad RM; Dokukin ME; Iyer KS; Woodworth CD; Volkov DO; Sokolov I
    Analyst; 2011 Apr; 136(7):1502-6. PubMed ID: 21305062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards early detection of cervical cancer: Fractal dimension of AFM images of human cervical epithelial cells at different stages of progression to cancer.
    Guz NV; Dokukin ME; Woodworth CD; Cardin A; Sokolov I
    Nanomedicine; 2015 Oct; 11(7):1667-75. PubMed ID: 25959926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Allows for Distinguishing Precancerous and Cancerous Human Epithelial Cervical Cells Using High-Resolution AFM Imaging of Adhesion Maps.
    Petrov M; Sokolov I
    Cells; 2023 Oct; 12(21):. PubMed ID: 37947614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal geometry applied to the analysis of cervix biopsy.
    Rodríguez-Velásquez JO; Barrios-Arroyave FA; Correa-Herrera SC; Grisales-Gutiérrez CE; Prieto-Bohórquez SE; Jattin-Balcázar JJ; Ruiz-Morales JJ
    Diagn Cytopathol; 2021 Aug; 49(8):938-943. PubMed ID: 33955721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells.
    Iyer S; Gaikwad RM; Subba-Rao V; Woodworth CD; Sokolov I
    Nat Nanotechnol; 2009 Jun; 4(6):389-93. PubMed ID: 19498402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal analysis of cervical intraepithelial neoplasia.
    Fabrizii M; Moinfar F; Jelinek HF; Karperien A; Ahammer H
    PLoS One; 2014; 9(10):e108457. PubMed ID: 25302712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal dimension of chromatin texture of squamous intraepithelial lesions of cervix.
    Dey P; Banik T
    Diagn Cytopathol; 2012 Feb; 40(2):152-4. PubMed ID: 22246932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The surface ultrastructure of normal and metaplastic cervical epithelia and of carcinoma in situ.
    Williams AE; Jordan JA; Allen JM; Murphy JF
    Cancer Res; 1973 Mar; 33(3):504-13. PubMed ID: 4689899
    [No Abstract]   [Full Text] [Related]  

  • 11. Novel fractal characteristic of atomic force microscopy images.
    Starodubtseva MN; Starodubtsev IE; Starodubtsev EG
    Micron; 2017 May; 96():96-102. PubMed ID: 28282551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning electron microscopy of the cervix uteri.
    Bonilla-Musoles F; Hernandez-Yago J; Torres JV
    Arch Gynakol; 1974 Mar; 216(2):91-7. PubMed ID: 4406635
    [No Abstract]   [Full Text] [Related]  

  • 13. A simple fluorescent technique for screening cervical cells prior to nuclear analysis.
    Steven FS; Johnson J; Eason P
    Anticancer Res; 1992; 12(6B):2147-9. PubMed ID: 1295461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of normal cervical epithelium, intraepithelial neoplasias and cervical carcinomas in vitro by quantitative studies on nuclear overlap behaviour.
    Ebeling K; Tanneberger S
    Int J Cancer; 1979 May; 23(5):632-8. PubMed ID: 457308
    [No Abstract]   [Full Text] [Related]  

  • 15. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening.
    Geng L; Feng J; Sun Q; Liu J; Hua W; Li J; Ao Z; You K; Guo Y; Liao F; Zhang Y; Guo H; Han J; Xiong G; Zhang L; Han D
    Nanoscale; 2015 Oct; 7(38):15589-93. PubMed ID: 26370304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-contact micro-cantilevers detect photothermally induced vibrations that can segregate different categories of exfoliative cervical cytology.
    Hammiche A; Walsh MJ; Pollock HM; Martin-Hirsch PL; Martin FL
    J Biochem Biophys Methods; 2007 Jun; 70(4):675-7. PubMed ID: 17320188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo.
    Yang L; Liu WT; Wu H; Wang C; Ping B; Shi DR
    J Biomed Biotechnol; 2011; 2011():214781. PubMed ID: 22007140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging of fractal geometry on surface of human cervical epithelial cells during progression towards cancer.
    Dokukin ME; Guz NV; Woodworth CD; Sokolov I
    New J Phys; 2015 Mar; 17(3):. PubMed ID: 25844044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Electron-microscopical examinations of the cervix uteri].
    Bonilla-Musoles F
    Gynakol Rundsch; 1969; 8(3):197-208. PubMed ID: 5407898
    [No Abstract]   [Full Text] [Related]  

  • 20. Towards nonspecific detection of malignant cervical cells with fluorescent silica beads.
    Iyer S; Woodworth CD; Gaikwad RM; Kievsky YY; Sokolov I
    Small; 2009 Oct; 5(20):2277-84. PubMed ID: 19415648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.