BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21797868)

  • 21. Is CRX protein a useful marker in differential diagnosis of tumors of the pineal region?
    Manila A; Mariangela N; Libero L; Francesca G; Romana BF; Felice G
    Pediatr Dev Pathol; 2014; 17(2):85-8. PubMed ID: 24555912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A modulatory role of the Rax homeobox gene in mature pineal gland function: Investigating the photoneuroendocrine circadian system of a Rax conditional knockout mouse.
    Rohde K; Bering T; Furukawa T; Rath MF
    J Neurochem; 2017 Oct; 143(1):100-111. PubMed ID: 28675567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development.
    Nishida A; Furukawa A; Koike C; Tano Y; Aizawa S; Matsuo I; Furukawa T
    Nat Neurosci; 2003 Dec; 6(12):1255-63. PubMed ID: 14625556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Barrier to autointegration factor interacts with the cone-rod homeobox and represses its transactivation function.
    Wang X; Xu S; Rivolta C; Li LY; Peng GH; Swain PK; Sung CH; Swaroop A; Berson EL; Dryja TP; Chen S
    J Biol Chem; 2002 Nov; 277(45):43288-300. PubMed ID: 12215455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and characterization of the canine photoreceptor specific cone-rod homeobox (CRX) gene and evaluation as a candidate for early onset photoreceptor diseases in the dog.
    Akhmedov NB; Baldwin VJ; Zangerl B; Kijas JW; Hunter L; Minoofar KD; Mellersh C; Ostrander EA; Acland GM; Farber DB; Aguirre GD
    Mol Vis; 2002 Mar; 8():79-84. PubMed ID: 11951083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Daily rhythm and regulation of clock gene expression in the rat pineal gland.
    Simonneaux V; Poirel VJ; Garidou ML; Nguyen D; Diaz-Rodriguez E; Pévet P
    Brain Res Mol Brain Res; 2004 Jan; 120(2):164-72. PubMed ID: 14741406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cone-rod homeobox CRX controls presynaptic active zone formation in photoreceptors of mammalian retina.
    Assawachananont J; Kim SY; Kaya KD; Fariss R; Roger JE; Swaroop A
    Hum Mol Genet; 2018 Oct; 27(20):3555-3567. PubMed ID: 30084954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx.
    Livesey FJ; Furukawa T; Steffen MA; Church GM; Cepko CL
    Curr Biol; 2000 Mar; 10(6):301-10. PubMed ID: 10744971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes.
    Peng GH; Ahmad O; Ahmad F; Liu J; Chen S
    Hum Mol Genet; 2005 Mar; 14(6):747-64. PubMed ID: 15689355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of CRX transactivation activity by phosducin isoforms.
    Zhu X; Craft CM
    Mol Cell Biol; 2000 Jul; 20(14):5216-26. PubMed ID: 10866677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian genomics of the chick pineal gland in vitro.
    Karaganis SP; Kumar V; Beremand PD; Bailey MJ; Thomas TL; Cassone VM
    BMC Genomics; 2008 May; 9():206. PubMed ID: 18454867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FIZ1 is part of the regulatory protein complex on active photoreceptor-specific gene promoters in vivo.
    Mali RS; Peng GH; Zhang X; Dang L; Chen S; Mitton KP
    BMC Mol Biol; 2008 Oct; 9():87. PubMed ID: 18854042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal and spatial expression patterns of the CRX transcription factor and its downstream targets. Critical differences during human and mouse eye development.
    Bibb LC; Holt JK; Tarttelin EE; Hodges MD; Gregory-Evans K; Rutherford A; Lucas RJ; Sowden JC; Gregory-Evans CY
    Hum Mol Genet; 2001 Jul; 10(15):1571-9. PubMed ID: 11468275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Daily oscillation and photoresponses of clock gene, Clock, and clock-associated gene, arylalkylamine N-acetyltransferase gene transcriptions in the rat pineal gland.
    Wang GQ; Du YZ; Tong J
    Chronobiol Int; 2007; 24(1):9-20. PubMed ID: 17364576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Panky, a novel photoreceptor-specific ankyrin repeat protein, is a transcriptional cofactor that suppresses CRX-regulated photoreceptor genes.
    Sanuki R; Omori Y; Koike C; Sato S; Furukawa T
    FEBS Lett; 2010 Feb; 584(4):753-8. PubMed ID: 20026326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Delayed expression of the Crx gene and photoreceptor development in the Chx10-deficient retina.
    Rutherford AD; Dhomen N; Smith HK; Sowden JC
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):375-84. PubMed ID: 14744875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rax : developmental and daily expression patterns in the rat pineal gland and retina.
    Rohde K; Klein DC; Møller M; Rath MF
    J Neurochem; 2011 Sep; 118(6):999-1007. PubMed ID: 21749377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance.
    Rath MF; Rohde K; Klein DC; Møller M
    Neurochem Res; 2013 Jun; 38(6):1100-12. PubMed ID: 23076630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graded gene expression changes determine phenotype severity in mouse models of CRX-associated retinopathies.
    Ruzycki PA; Tran NM; Kefalov VJ; Kolesnikov AV; Chen S
    Genome Biol; 2015 Sep; 16(1):171. PubMed ID: 26324254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors.
    Corbo JC; Lawrence KA; Karlstetter M; Myers CA; Abdelaziz M; Dirkes W; Weigelt K; Seifert M; Benes V; Fritsche LG; Weber BH; Langmann T
    Genome Res; 2010 Nov; 20(11):1512-25. PubMed ID: 20693478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.