These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 21798096)

  • 1. Role of TGF-β signaling in inherited and acquired myopathies.
    Burks TN; Cohn RD
    Skelet Muscle; 2011 May; 1(1):19. PubMed ID: 21798096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming growth factor-beta and myostatin signaling in skeletal muscle.
    Kollias HD; McDermott JC
    J Appl Physiol (1985); 2008 Mar; 104(3):579-87. PubMed ID: 18032576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The TGF-β Signalling Network in Muscle Development, Adaptation and Disease.
    Chen JL; Colgan TD; Walton KL; Gregorevic P; Harrison CA
    Adv Exp Med Biol; 2016; 900():97-131. PubMed ID: 27003398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia.
    Burks TN; Andres-Mateos E; Marx R; Mejias R; Van Erp C; Simmers JL; Walston JD; Ward CW; Cohn RD
    Sci Transl Med; 2011 May; 3(82):82ra37. PubMed ID: 21562229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-β signaling in motor neuron diseases.
    Katsuno M; Adachi H; Banno H; Suzuki K; Tanaka F; Sobue G
    Curr Mol Med; 2011 Feb; 11(1):48-56. PubMed ID: 21189118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-beta1 upregulates myostatin expression in mouse C2C12 myoblasts.
    Budasz-Rwiderska M; Jank M; Motyl T
    J Physiol Pharmacol; 2005 Jun; 56 Suppl 3():195-214. PubMed ID: 16077203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF-β inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II.
    Gardner S; Alzhanov D; Knollman P; Kuninger D; Rotwein P
    Mol Endocrinol; 2011 Jan; 25(1):128-37. PubMed ID: 21106882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A Review.
    Ismaeel A; Kim JS; Kirk JS; Smith RS; Bohannon WT; Koutakis P
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31108916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy.
    Ohsawa Y; Takayama K; Nishimatsu S; Okada T; Fujino M; Fukai Y; Murakami T; Hagiwara H; Itoh F; Tsuchida K; Hayashi Y; Sunada Y
    PLoS One; 2015; 10(7):e0133713. PubMed ID: 26226340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemojuvelin is a novel suppressor for Duchenne muscular dystrophy and age-related muscle wasting.
    Zhang P; He J; Wang F; Gong J; Wang L; Wu Q; Li W; Liu H; Wang J; Zhang K; Li M; Huang X; Pu C; Li Y; Jiang F; Wang F; Min J; Chen X
    J Cachexia Sarcopenia Muscle; 2019 Jun; 10(3):557-573. PubMed ID: 30884219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased Smad signaling and reduced MRF expression in skeletal muscle from obese subjects.
    Watts R; McAinch AJ; Dixon JB; O'Brien PE; Cameron-Smith D
    Obesity (Silver Spring); 2013 Mar; 21(3):525-8. PubMed ID: 23404842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-β1, Smad3, and HDAC4 Signaling.
    Huang QK; Qiao HY; Fu MH; Li G; Li WB; Chen Z; Wei J; Liang BS
    Med Sci Monit; 2016 Apr; 22():1161-70. PubMed ID: 27054781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of myostatin and bone morphogenetic proteins in muscular disorders.
    Tsuchida K
    Expert Opin Biol Ther; 2006 Feb; 6(2):147-54. PubMed ID: 16436040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-122-5p negatively regulates the transforming growth factor-β/Smad signaling pathway in skeletal muscle myogenesis.
    Ding Z; Lin J; Sun Y; Cong S; Liu S; Zhang Y; Chen Q; Chen J
    Cell Biochem Funct; 2020 Mar; 38(2):231-238. PubMed ID: 31710120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Myostatin blockade therapy for muscular atrophy].
    Sunada Y
    Brain Nerve; 2011 Nov; 63(11):1271-7. PubMed ID: 22068480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy.
    Glass DJ
    Curr Top Microbiol Immunol; 2010; 346():267-78. PubMed ID: 20593312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states.
    Cohn RD; van Erp C; Habashi JP; Soleimani AA; Klein EC; Lisi MT; Gamradt M; ap Rhys CM; Holm TM; Loeys BL; Ramirez F; Judge DP; Ward CW; Dietz HC
    Nat Med; 2007 Feb; 13(2):204-10. PubMed ID: 17237794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HMGB1/autophagy pathway mediates the atrophic effect of TGF-β1 in denervated skeletal muscle.
    Yang X; Xue P; Liu X; Xu X; Chen Z
    Cell Commun Signal; 2018 Dec; 16(1):97. PubMed ID: 30526602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-beta1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells.
    Lien SC; Usami S; Chien S; Chiu JJ
    Cell Signal; 2006 Aug; 18(8):1270-8. PubMed ID: 16310342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy.
    Abrigo J; Rivera JC; Simon F; Cabrera D; Cabello-Verrugio C
    Cell Signal; 2016 May; 28(5):366-376. PubMed ID: 26825874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.