These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 21798175)
21. Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin. Cheng CH; Chen L; Near TJ; Jin Y Mol Biol Evol; 2003 Nov; 20(11):1897-908. PubMed ID: 12885956 [TBL] [Abstract][Full Text] [Related]
22. Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Rutschmann S; Matschiner M; Damerau M; Muschick M; Lehmann MF; Hanel R; Salzburger W Mol Ecol; 2011 Nov; 20(22):4707-21. PubMed ID: 21951675 [TBL] [Abstract][Full Text] [Related]
23. Cytogenetic characterization of the sole Solea senegalensis (Teleostei: Pleuronectiformes: Soleidae): Ag-NOR, (GATA)n, (TTAGGG)n and ribosomal genes by one-color and two-color FISH. Cross I; Merlo A; Manchado M; Infante C; Cañavate JP; Rebordinos L Genetica; 2006; 128(1-3):253-9. PubMed ID: 17028955 [TBL] [Abstract][Full Text] [Related]
24. Adaptations to an extreme environment: retinal organisation and spectral properties of photoreceptors in Antarctic notothenioid fish. Pointer MA; Cheng CH; Bowmaker JK; Parry JW; Soto N; Jeffery G; Cowing JA; Hunt DM J Exp Biol; 2005 Jun; 208(Pt 12):2363-76. PubMed ID: 15939776 [TBL] [Abstract][Full Text] [Related]
25. Not Frozen in the Ice: Large and Dynamic Rearrangements in the Mitochondrial Genomes of the Antarctic Fish. Papetti C; Babbucci M; Dettai A; Basso A; Lucassen M; Harms L; Bonillo C; Heindler FM; Patarnello T; Negrisolo E Genome Biol Evol; 2021 Mar; 13(3):. PubMed ID: 33570582 [TBL] [Abstract][Full Text] [Related]
26. Adaptations and Diversity of Antarctic Fishes: A Genomic Perspective. Daane JM; Detrich HW Annu Rev Anim Biosci; 2022 Feb; 10():39-62. PubMed ID: 34748709 [TBL] [Abstract][Full Text] [Related]
27. Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Cheng CC; Rivera-Colón AG; Minhas BF; Wilson L; Rayamajhi N; Vargas-Chacoff L; Catchen JM Genes (Basel); 2023 May; 14(6):. PubMed ID: 37372376 [TBL] [Abstract][Full Text] [Related]
28. The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. Yang N; Peng C; Cheng D; Huang Q; Xu G; Gao F; Chen L Gene; 2013 May; 521(1):32-7. PubMed ID: 23528224 [TBL] [Abstract][Full Text] [Related]
29. The evolutionary puzzle solution for the origins of the partial loss of the Cτ2 exon in notothenioid fishes. Ametrano A; Gerdol M; Vitale M; Greco S; Oreste U; Coscia MR Fish Shellfish Immunol; 2021 Sep; 116():124-139. PubMed ID: 34038801 [TBL] [Abstract][Full Text] [Related]
30. Physical mapping of ribosomal RNA genes in peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. Zhang D; Sang T Am J Bot; 1999 May; 86(5):735-40. PubMed ID: 10330077 [TBL] [Abstract][Full Text] [Related]
31. Karyotypic characterization and genomic organization of the 5S rDNA in Erpetoichthys calabaricus (Osteichthyes, Polypteridae). Morescalchi MA; Liguori I; Rocco L; Stingo V Genetica; 2007 Oct; 131(2):209-16. PubMed ID: 17136578 [TBL] [Abstract][Full Text] [Related]
32. Divergent location of ribosomal genes in chromosomes of fish thorny-headed worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Bombarová M; Marec F; Nguyen P; Spakulová M Genetica; 2007 Oct; 131(2):141-9. PubMed ID: 17143651 [TBL] [Abstract][Full Text] [Related]
33. Cytogenetic mapping of 5S and 18S rRNAs and H3 histone genes in 4 ancient Proscopiidae grasshopper species: contribution to understanding the evolutionary dynamics of multigene families. Cabral-de-Mello DC; Martins C; Souza MJ; Moura RC Cytogenet Genome Res; 2011; 132(1-2):89-93. PubMed ID: 20668370 [TBL] [Abstract][Full Text] [Related]
34. Genome size, karyotyping and FISH physical mapping of 45S and 5S genes in two cherry rootstocks: Prunus subhirtella and Prunus incisa xserrula. Maghuly F; Schmoellerl B; Temsch EM; Laimer M J Biotechnol; 2010 Aug; 149(1-2):88-94. PubMed ID: 20600377 [TBL] [Abstract][Full Text] [Related]
35. Assembly of the antifreeze glycoprotein/trypsinogen-like protease genomic locus in the Antarctic toothfish Dissostichus mawsoni (Norman). Nicodemus-Johnson J; Silic S; Ghigliotti L; Pisano E; Cheng CH Genomics; 2011 Sep; 98(3):194-201. PubMed ID: 21684327 [TBL] [Abstract][Full Text] [Related]
36. Chromosomal mapping of the major and minor ribosomal genes, (GATA)n and (TTAGGG)n by one-color and double-color FISH in the toadfish Halobatrachus didactylus (Teleostei: Batrachoididae). Merlo A; Cross I; Palazón JL; Sarasquete C; Rebordinos L Genetica; 2007 Oct; 131(2):195-200. PubMed ID: 17192824 [TBL] [Abstract][Full Text] [Related]
37. The evolution of thermal adaptation in polar fish. Verde C; Parisi E; di Prisco G Gene; 2006 Dec; 385():137-45. PubMed ID: 16757135 [TBL] [Abstract][Full Text] [Related]
38. Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) beetles. Cabral-de-Mello DC; Moura RC; Martins C Cytogenet Genome Res; 2011; 134(2):127-35. PubMed ID: 21555878 [TBL] [Abstract][Full Text] [Related]
39. Phylogenetics of notothenioid fishes (Teleostei: Acanthomorpha): inferences from mitochondrial and nuclear gene sequences. Near TJ; Cheng CH Mol Phylogenet Evol; 2008 May; 47(2):832-40. PubMed ID: 18249562 [TBL] [Abstract][Full Text] [Related]