These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21798662)

  • 1. The degradation of 1,2,4-trichlorobenzene using synthesized Co3O4 and the hypothesized mechanism.
    Lin S; Su G; Zheng M; Jia M; Qi C; Li W
    J Hazard Mater; 2011 Sep; 192(3):1697-704. PubMed ID: 21798662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure relationship for catalytic dechlorination rate of dichlorobenzenes in water.
    Xu X; Zhou H; Wang D
    Chemosphere; 2005 Mar; 58(11):1497-502. PubMed ID: 15694469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial cultures preferentially removing singly flanked chlorine substituents from chlorobenzenes.
    Hölscher T; Lisec J; Baani M; Duan TH; Adrian L
    Environ Sci Technol; 2010 Dec; 44(23):8936-42. PubMed ID: 21043517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: reactive sites, catalyst stability, particle aging, and regeneration.
    Zhu BW; Lim TT
    Environ Sci Technol; 2007 Nov; 41(21):7523-9. PubMed ID: 18044536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents.
    Cecilia JA; Infantes-Molina A; Rodríguez-Castellón E; Jiménez-López A
    J Hazard Mater; 2013 Sep; 260():167-75. PubMed ID: 23747475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergic effect of calcium oxide and iron (III) oxide on the dechlorination of hexachlorobenzene.
    Ma X; Zheng M; Liu W; Qian Y; Zhao X; Zhang B
    Chemosphere; 2005 Aug; 60(6):796-801. PubMed ID: 15939458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive and fast responding CO sensor based on Co3O4 nanorods.
    Patil D; Patil P; Subramanian V; Joy PA; Potdar HS
    Talanta; 2010 Apr; 81(1-2):37-43. PubMed ID: 20188884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites.
    Wang Y; Zhang HJ; Lu L; Stubbs LP; Wong CC; Lin J
    ACS Nano; 2010 Aug; 4(8):4753-61. PubMed ID: 20666372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of cobalt species on the interface, which is developed between aqueous solution and metal oxides used for the preparation of supported catalysts: a critical review.
    Bourikas K; Kordulis C; Vakros J; Lycourghiotis A
    Adv Colloid Interface Sci; 2004 Aug; 110(3):97-120. PubMed ID: 15328060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface chemistry of monochlorinated and dichlorinated benzenes on Si(100)2x1: comparison study of chlorine content and isomeric effects.
    Zhou XJ; Leung KT
    J Phys Chem B; 2006 May; 110(19):9601-7. PubMed ID: 16686508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic effects by metal oxides on the formation and degradation of chlorinated aromatic compounds in fly ash.
    Oberg T; Bergbäck B; Filipsson M
    Chemosphere; 2008 Apr; 71(6):1135-43. PubMed ID: 18061236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene.
    Yan Q; Li X; Zhao Q; Chen G
    J Hazard Mater; 2012 Mar; 209-210():385-91. PubMed ID: 22305597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodechlorination of dichlorobenzenes and their derivatives over Ni-Mo/C catalyst: kinetic analysis and effect of molecular structure of reactant.
    Gryglewicz S; Piechocki W
    Chemosphere; 2011 Apr; 83(3):334-9. PubMed ID: 21211817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and characterization of Co(III)-semiquinonate phenoxyl radical species.
    Shimazaki Y; Kabe R; Huth S; Tani F; Naruta Y; Yamauchi O
    Inorg Chem; 2007 Jul; 46(15):6083-90. PubMed ID: 17595077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism.
    Ma C; Wang D; Xue W; Dou B; Wang H; Hao Z
    Environ Sci Technol; 2011 Apr; 45(8):3628-34. PubMed ID: 21375237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway.
    Su G; Liu Y; Huang L; Shi Y; Zhang A; Zhang L; Liu W; Gao L; Zheng M
    Chemosphere; 2013 Jan; 90(1):103-11. PubMed ID: 22939896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling effect between cobalt oxides and carbon for oxygen reduction reaction.
    Liu J; Jiang L; Tang Q; Zhang B; Su DS; Wang S; Sun G
    ChemSusChem; 2012 Dec; 5(12):2315-8. PubMed ID: 23143708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of anions on the kinetics and reactivity of nanoscale Pd/Fe in trichlorobenzene dechlorination.
    Lim TT; Zhu BW
    Chemosphere; 2008 Nov; 73(9):1471-7. PubMed ID: 18760820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous photocatalytic degradation of monochlorobenzene in water.
    Huang HH; Tseng DH; Juang LC
    J Hazard Mater; 2008 Aug; 156(1-3):186-93. PubMed ID: 18215461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.