BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 21798734)

  • 1. Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells.
    Beier UH; Akimova T; Liu Y; Wang L; Hancock WW
    Curr Opin Immunol; 2011 Oct; 23(5):670-8. PubMed ID: 21798734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms.
    Beier UH; Wang L; Han R; Akimova T; Liu Y; Hancock WW
    Sci Signal; 2012 Jun; 5(229):ra45. PubMed ID: 22715468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3(+) T-regulatory cells.
    de Zoeten EF; Wang L; Butler K; Beier UH; Akimova T; Sai H; Bradner JE; Mazitschek R; Kozikowski AP; Matthias P; Hancock WW
    Mol Cell Biol; 2011 May; 31(10):2066-78. PubMed ID: 21444725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency.
    Bettini ML; Pan F; Bettini M; Finkelstein D; Rehg JE; Floess S; Bell BD; Ziegler SF; Huehn J; Pardoll DM; Vignali DA
    Immunity; 2012 May; 36(5):717-30. PubMed ID: 22579476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone/protein deacetylase inhibitor therapy for enhancement of Foxp3+ T-regulatory cell function posttransplantation.
    Wang L; Beier UH; Akimova T; Dahiya S; Han R; Samanta A; Levine MH; Hancock WW
    Am J Transplant; 2018 Jul; 18(7):1596-1603. PubMed ID: 29603600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immune regulation by histone deacetylases: a focus on the alteration of FOXP3 activity.
    Zhang H; Xiao Y; Zhu Z; Li B; Greene MI
    Immunol Cell Biol; 2012 Jan; 90(1):95-100. PubMed ID: 22124370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function.
    Huang J; Wang L; Dahiya S; Beier UH; Han R; Samanta A; Bergman J; Sotomayor EM; Seto E; Kozikowski AP; Hancock WW
    Sci Rep; 2017 Aug; 7(1):8626. PubMed ID: 28819166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone acetyltransferase mediated regulation of FOXP3 acetylation and Treg function.
    Xiao Y; Li B; Zhou Z; Hancock WW; Zhang H; Greene MI
    Curr Opin Immunol; 2010 Oct; 22(5):583-91. PubMed ID: 20869864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting FOXP3 complex ensemble in drug discovery.
    Huang J; Wang S; Jia Y; Zhang Y; Dai X; Li B
    Adv Protein Chem Struct Biol; 2020; 121():143-168. PubMed ID: 32312420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian Sterile 20-like Kinase 1 (Mst1) Enhances the Stability of Forkhead Box P3 (Foxp3) and the Function of Regulatory T Cells by Modulating Foxp3 Acetylation.
    Li J; Du X; Shi H; Deng K; Chi H; Tao W
    J Biol Chem; 2015 Dec; 290(52):30762-70. PubMed ID: 26538561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival.
    Beier UH; Angelin A; Akimova T; Wang L; Liu Y; Xiao H; Koike MA; Hancock SA; Bhatti TR; Han R; Jiao J; Veasey SC; Sims CA; Baur JA; Wallace DC; Hancock WW
    FASEB J; 2015 Jun; 29(6):2315-26. PubMed ID: 25681462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of protein turnover by acetyltransferases and deacetylases.
    Sadoul K; Boyault C; Pabion M; Khochbin S
    Biochimie; 2008 Feb; 90(2):306-12. PubMed ID: 17681659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T cell signaling targets for enhancing regulatory or effector function.
    Pan F; Fan H; Liu Z; Jiang S
    Sci Signal; 2012 Jul; 5(235):pe32. PubMed ID: 22855503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone/protein deacetylase inhibitors increase suppressive functions of human FOXP3+ Tregs.
    Akimova T; Ge G; Golovina T; Mikheeva T; Wang L; Riley JL; Hancock WW
    Clin Immunol; 2010 Sep; 136(3):348-63. PubMed ID: 20478744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases.
    Wang J; Feng S; Zhang Q; Qin H; Xu C; Fu X; Yan L; Zhao Y; Yao K
    Mol Neurobiol; 2023 Apr; 60(4):2330-2354. PubMed ID: 36637745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.
    Wang Z; Zang C; Cui K; Schones DE; Barski A; Peng W; Zhao K
    Cell; 2009 Sep; 138(5):1019-31. PubMed ID: 19698979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone deacetylase inhibitors and transplantation.
    Tao R; de Zoeten EF; Ozkaynak E; Wang L; Li B; Greene MI; Wells AD; Hancock WW
    Curr Opin Immunol; 2007 Oct; 19(5):589-95. PubMed ID: 17719760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models.
    Shen L; Ciesielski M; Ramakrishnan S; Miles KM; Ellis L; Sotomayor P; Shrikant P; Fenstermaker R; Pili R
    PLoS One; 2012; 7(1):e30815. PubMed ID: 22303460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The emerging role of histone deacetylases (HDACs) in UPR regulation.
    Kahali S; Sarcar B; Chinnaiyan P
    Methods Enzymol; 2011; 490():159-74. PubMed ID: 21266250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deacetylase inhibition promotes the generation and function of regulatory T cells.
    Tao R; de Zoeten EF; Ozkaynak E; Chen C; Wang L; Porrett PM; Li B; Turka LA; Olson EN; Greene MI; Wells AD; Hancock WW
    Nat Med; 2007 Nov; 13(11):1299-307. PubMed ID: 17922010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.