These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 217993)

  • 41. The early phase of adaptation in repetitive impulse discharges of cat spinal motoneurones.
    Kernell D
    Brain Res; 1972 Jun; 41(1):184-6. PubMed ID: 4338544
    [No Abstract]   [Full Text] [Related]  

  • 42. Correlation between the topographical distribution of [3H]GABA uptake and primary afferent depolarization in the frog spinal cord.
    Glusman S
    Brain Res; 1975 Apr; 88(1):109-14. PubMed ID: 1122389
    [No Abstract]   [Full Text] [Related]  

  • 43. The contribution of cutaneous inputs to locomotion in the intact and the spinal cat.
    Bouyer LJ; Rossignol S
    Ann N Y Acad Sci; 1998 Nov; 860():508-12. PubMed ID: 9928349
    [No Abstract]   [Full Text] [Related]  

  • 44. Brain stem projections to spinal motoneuronal cell groups in rat studied by means of electron microscopy autoradiography.
    Holstege JC; Kuypers HG
    Prog Brain Res; 1982; 57():177-83. PubMed ID: 6296916
    [No Abstract]   [Full Text] [Related]  

  • 45. Extracellular potassium accumulation and transmission in frog spinal cord.
    Syková E; Orkand RK
    Neuroscience; 1980; 5(8):1421-8. PubMed ID: 6250100
    [No Abstract]   [Full Text] [Related]  

  • 46. Segmental afferent regulation of hindlimb wiping in the spinal frog.
    Kargo WJ; Davies MR; Giszter SF
    Ann N Y Acad Sci; 1998 Nov; 860():456-7. PubMed ID: 9928337
    [No Abstract]   [Full Text] [Related]  

  • 47. Topographic distribution of terminals of Ia and group II fibers in spinal cord, as revealed by postsynaptic population potentials.
    Lüscher HR; Ruenzel P; Henneman E
    J Neurophysiol; 1980 Apr; 43(4):968-85. PubMed ID: 6244374
    [No Abstract]   [Full Text] [Related]  

  • 48. Changes in firing rates of extensor motoneurones caused by electrically increased spinal inputs.
    Tan U
    Pflugers Arch; 1971; 326(1):35-47. PubMed ID: 5104332
    [No Abstract]   [Full Text] [Related]  

  • 49. Intracellular ion activities and equilibrium potentials in motoneurones and glia cells of the frog spinal cord.
    Bührle CP; Sonnhof U
    Pflugers Arch; 1983 Feb; 396(2):144-53. PubMed ID: 6601260
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of dendritic events in the initiation of monosynaptic spikes in frog motoneurons.
    Czéh G
    Brain Res; 1972 Apr; 39(2):505-9. PubMed ID: 5030273
    [No Abstract]   [Full Text] [Related]  

  • 51. Clinical relevance of the putative C-3-4 propriospinal system in humans.
    Burke D
    Muscle Nerve; 2001 Nov; 24(11):1437-9. PubMed ID: 11745944
    [No Abstract]   [Full Text] [Related]  

  • 52. Depolarization of primary afferents in the frog spinal cord under high Mg2+ concentrations.
    Vyklický L; Syková E; Mellerová B
    Brain Res; 1976 Nov; 117(1):153-6. PubMed ID: 1086700
    [No Abstract]   [Full Text] [Related]  

  • 53. Calcium and action potentials in primary afferent terminals.
    Sastry BR
    Life Sci; 1979 Jun; 24(23):2193-200. PubMed ID: 481108
    [No Abstract]   [Full Text] [Related]  

  • 54. Recurrent interactions between individual motoneurones and dorsal root fibres in the frog.
    Shapovalov AI; Shiriaev BI
    Exp Brain Res; 1980; 38(1):115-6. PubMed ID: 7351224
    [No Abstract]   [Full Text] [Related]  

  • 55. Changes in motoneuron properties following spinal cord transection: does afferent input play a role?
    Laird AS; Wu A; Lauschke JL
    J Physiol; 2008 Jul; 586(13):3031-2. PubMed ID: 18483070
    [No Abstract]   [Full Text] [Related]  

  • 56. The use of the transition elements manganese, cobalt and nickel as synaptic blocking agents on isolated, hemisected, mouse spinal cord.
    Bagust J; Kerkut GA
    Brain Res; 1980 Jan; 182(2):474-7. PubMed ID: 6244045
    [No Abstract]   [Full Text] [Related]  

  • 57. Motoneuronal after-potentials and extracellular divalent cations.
    Krnjević K; Lamour Y; MacDonald JF; Nistri A
    Can J Physiol Pharmacol; 1978 Jun; 56(3):516-20. PubMed ID: 667728
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of the duration and intensity of afferent activation in the regulation of morphological changes in the neuron.
    Darinskii YuA
    Neurosci Behav Physiol; 1978; 9(3):302-6. PubMed ID: 314070
    [No Abstract]   [Full Text] [Related]  

  • 59. Ultrastructural aspects of electrotonic junctions in the spinal cord of the frog.
    Sotelo C; Taxi J
    Brain Res; 1970 Jan; 17(1):137-41. PubMed ID: 4904928
    [No Abstract]   [Full Text] [Related]  

  • 60. [Analysis of the excitatory postsynaptic potentials registered intracellulary of frog spinal motoneurons].
    FADIGA E; BROOKHART JM
    Boll Soc Ital Biol Sper; 1959 Dec; 35():1932-5. PubMed ID: 13821268
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.