These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21799808)

  • 1. Exploiting publicly available biological and biochemical information for the discovery of novel short linear motifs.
    Sayadi A; Briganti L; Tramontano A; Via A
    PLoS One; 2011; 6(7):e22270. PubMed ID: 21799808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins.
    Edwards RJ; Davey NE; Shields DC
    PLoS One; 2007 Oct; 2(10):e967. PubMed ID: 17912346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SLiMDisc server: short, linear motif discovery in proteins.
    Davey NE; Edwards RJ; Shields DC
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W455-9. PubMed ID: 17576682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational prediction of short linear motifs from protein sequences.
    Edwards RJ; Palopoli N
    Methods Mol Biol; 2015; 1268():89-141. PubMed ID: 25555723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-SLIMMER: domain-SLiM interaction motifs miner for sequence based protein-protein interaction data.
    Hugo W; Ng SK; Sung WK
    J Proteome Res; 2011 Dec; 10(12):5285-95. PubMed ID: 22004555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Short Linear Motifs Using the ELM Database and Tools.
    Gouw M; Sámano-Sánchez H; Van Roey K; Diella F; Gibson TJ; Dinkel H
    Curr Protoc Bioinformatics; 2017 Jun; 58():8.22.1-8.22.35. PubMed ID: 28654726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational identification and analysis of protein short linear motifs.
    Davey NE; Edwards RJ; Shields DC
    Front Biosci (Landmark Ed); 2010 Jun; 15(3):801-25. PubMed ID: 20515727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery.
    Davey NE; Shields DC; Edwards RJ
    Bioinformatics; 2009 Feb; 25(4):443-50. PubMed ID: 19136552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The LabelHash server and tools for substructure-based functional annotation.
    Moll M; Bryant DH; Kavraki LE
    Bioinformatics; 2011 Aug; 27(15):2161-2. PubMed ID: 21659320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs.
    Davey NE; Haslam NJ; Shields DC; Edwards RJ
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W534-9. PubMed ID: 20497999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SLiMSearch 2.0: biological context for short linear motifs in proteins.
    Davey NE; Haslam NJ; Shields DC; Edwards RJ
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W56-60. PubMed ID: 21622654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GOmotif: A web server for investigating the biological role of protein sequence motifs.
    Bristow F; He R; Van Domselaar G
    BMC Bioinformatics; 2011 Sep; 12():379. PubMed ID: 21943350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions.
    Krystkowiak I; Davey NE
    Nucleic Acids Res; 2017 Jul; 45(W1):W464-W469. PubMed ID: 28387819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.
    Chiu YY; Lin CY; Lin CT; Hsu KC; Chang LZ; Yang JM
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S21. PubMed ID: 23281852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ELM: the status of the 2010 eukaryotic linear motif resource.
    Gould CM; Diella F; Via A; Puntervoll P; Gemünd C; Chabanis-Davidson S; Michael S; Sayadi A; Bryne JC; Chica C; Seiler M; Davey NE; Haslam N; Weatheritt RJ; Budd A; Hughes T; Pas J; Rychlewski L; Travé G; Aasland R; Helmer-Citterich M; Linding R; Gibson TJ
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D167-80. PubMed ID: 19920119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering short linear protein motif based on selective training of profile hidden Markov models.
    Song T; Gu H
    J Theor Biol; 2015 Jul; 377():75-84. PubMed ID: 25791288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing motif correlations in proteins.
    Horng JT; Huang HD; Wang SH; Chen MY; Huang SL; Hwang JK
    J Comput Chem; 2003 Dec; 24(16):2032-43. PubMed ID: 14531057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attributes of short linear motifs.
    Davey NE; Van Roey K; Weatheritt RJ; Toedt G; Uyar B; Altenberg B; Budd A; Diella F; Dinkel H; Gibson TJ
    Mol Biosyst; 2012 Jan; 8(1):268-81. PubMed ID: 21909575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics Approaches for Predicting Disordered Protein Motifs.
    Bhowmick P; Guharoy M; Tompa P
    Adv Exp Med Biol; 2015; 870():291-318. PubMed ID: 26387106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting functional sites with an automated algorithm suitable for heterogeneous datasets.
    La D; Livesay DR
    BMC Bioinformatics; 2005 May; 6():116. PubMed ID: 15890082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.