These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21800059)

  • 41. Remarkable spatial memory in a migratory cardinalfish.
    Fukumori K; Okuda N; Yamaoka K; Yanagisawa Y
    Anim Cogn; 2010 Mar; 13(2):385-9. PubMed ID: 19784851
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors.
    Chung WS; Marshall NJ; Watson SA; Munday PL; Nilsson GE
    J Exp Biol; 2014 Feb; 217(Pt 3):323-6. PubMed ID: 24477607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ocean acidification alters fish-jellyfish symbiosis.
    Nagelkerken I; Pitt KA; Rutte MD; Geertsma RC
    Proc Biol Sci; 2016 Jun; 283(1833):. PubMed ID: 27358374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Irreversible behavioural impairment of fish starts early: Embryonic exposure to ocean acidification.
    Rodriguez-Dominguez A; Connell SD; Baziret C; Nagelkerken I
    Mar Pollut Bull; 2018 Aug; 133():562-567. PubMed ID: 30041350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in ranges of large ocean fish.
    Brown JH
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11735-6. PubMed ID: 21734153
    [No Abstract]   [Full Text] [Related]  

  • 46. Behavioural responses of fish groups exposed to a predatory threat under elevated CO
    Cattano C; Fine M; Quattrocchi F; Holzman R; Milazzo M
    Mar Environ Res; 2019 May; 147():179-184. PubMed ID: 31060864
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum.
    Bignami S; Sponaugle S; Cowen RK
    Glob Chang Biol; 2013 Apr; 19(4):996-1006. PubMed ID: 23504878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ocean acidification increases fatty acids levels of larval fish.
    Díaz-Gil C; Catalán IA; Palmer M; Faulk CK; Fuiman LA
    Biol Lett; 2015 Jul; 11(7):. PubMed ID: 26179801
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High latitude fish in a high CO2 world: Synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids.
    Enzor LA; Zippay ML; Place SP
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Jan; 164(1):154-61. PubMed ID: 22884997
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of dissolved carbon dioxide on the physiology and behavior of fish in artificial streams.
    Ross RM; Krise WF; Redell LA; Bennett RM
    Environ Toxicol; 2001; 16(1):84-95. PubMed ID: 11345549
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natal homing in a marine fish metapopulation.
    Thorrold SR; Latkoczy C; Swart PK; Jones CM
    Science; 2001 Jan; 291(5502):297-9. PubMed ID: 11209078
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ocean acidification alters temperature and salinity preferences in larval fish.
    Pistevos JC; Nagelkerken I; Rossi T; Connell SD
    Oecologia; 2017 Feb; 183(2):545-553. PubMed ID: 27888336
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intertidal pool fish Girella laevifrons (Kyphosidae) shown strong physiological homeostasis but shy personality: The cost of living in hypercapnic habitats.
    Benítez S; Duarte C; Opitz T; Lagos NA; Pulgar JM; Vargas CA; Lardies MA
    Mar Pollut Bull; 2017 May; 118(1-2):57-63. PubMed ID: 28215555
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of various reef sounds on coral-fish larvae behaviour.
    Parmentier E; Berten L; Rigo P; Aubrun F; Nedelec SL; Simpson SD; Lecchini D
    J Fish Biol; 2015 May; 86(5):1507-18. PubMed ID: 25786340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Are larvae of demersal fishes plankton or nekton?
    Leis JM
    Adv Mar Biol; 2006; 51():57-141. PubMed ID: 16905426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extra-pair mating in a socially monogamous and paternal mouth-brooding cardinalfish.
    Rueger T; Harrison HB; Gardiner NM; Berumen ML; Jones GP
    Mol Ecol; 2019 May; 28(10):2625-2635. PubMed ID: 30985980
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish.
    Schunter C; Welch MJ; Nilsson GE; Rummer JL; Munday PL; Ravasi T
    Nat Ecol Evol; 2018 Feb; 2(2):334-342. PubMed ID: 29255298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genomic analysis of a cardinalfish with larval homing potential reveals genetic admixture in the Okinawa Islands.
    Gould AL; Dunlap PV
    Mol Ecol; 2017 Aug; 26(15):3870-3882. PubMed ID: 28477434
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Breathing with a mouth full of eggs: respiratory consequences of mouthbrooding in cardinalfish.
    Ostlund-Nilsson S; Nilsson GE
    Proc Biol Sci; 2004 May; 271(1543):1015-22. PubMed ID: 15293854
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules.
    Roggatz CC; Lorch M; Hardege JD; Benoit DM
    Glob Chang Biol; 2016 Dec; 22(12):3914-3926. PubMed ID: 27353732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.