These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 21800871)
1. Aggregation and thermoresponsive properties of new star block copolymers with a cholic acid core. Li C; Lavigueur C; Zhu XX Langmuir; 2011 Sep; 27(17):11174-9. PubMed ID: 21800871 [TBL] [Abstract][Full Text] [Related]
2. Asymmetric poly(ethylene glycol) star polymers with a cholic acid core and their aggregation properties. Luo J; Giguère G; Zhu XX Biomacromolecules; 2009 Apr; 10(4):900-6. PubMed ID: 19281151 [TBL] [Abstract][Full Text] [Related]
4. LCST and UCST in One: Double Thermoresponsive Behavior of Block Copolymers of Poly(ethylene glycol) and Poly(acrylamide-co-acrylonitrile). Käfer F; Liu F; Stahlschmidt U; Jérôme V; Freitag R; Karg M; Agarwal S Langmuir; 2015 Aug; 31(32):8940-6. PubMed ID: 26202833 [TBL] [Abstract][Full Text] [Related]
5. Bile Acid-Based Drug Delivery Systems for Enhanced Doxorubicin Encapsulation: Comparing Hydrophobic and Ionic Interactions in Drug Loading and Release. Cunningham AJ; Robinson M; Banquy X; Leblond J; Zhu XX Mol Pharm; 2018 Mar; 15(3):1266-1276. PubMed ID: 29378128 [TBL] [Abstract][Full Text] [Related]
6. Functional star polymers with a cholic acid core and their thermosensitive properties. Giguère G; Zhu XX Biomacromolecules; 2010 Jan; 11(1):201-6. PubMed ID: 19994878 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Y-shaped poly(solketal acrylate)-containing block copolymers and study on the thermoresponsive behavior for micellar aggregates. Yang J; Zhang D; Jiang S; Yang J; Nie J J Colloid Interface Sci; 2010 Dec; 352(2):405-14. PubMed ID: 20887998 [TBL] [Abstract][Full Text] [Related]
8. Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure. Cui Q; Wu F; Wang E J Phys Chem B; 2011 May; 115(19):5913-22. PubMed ID: 21520977 [TBL] [Abstract][Full Text] [Related]
9. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354 [TBL] [Abstract][Full Text] [Related]
10. Block and random copolymers bearing cholic acid and oligo(ethylene glycol) pendant groups: aggregation, thermosensitivity, and drug loading. Shao Y; Jia YG; Shi C; Luo J; Zhu XX Biomacromolecules; 2014 May; 15(5):1837-44. PubMed ID: 24725005 [TBL] [Abstract][Full Text] [Related]
11. Physicochemical characterization of degradable thermosensitive polymeric micelles. Soga O; van Nostrum CF; Ramzi A; Visser T; Soulimani F; Frederik PM; Bomans PH; Hennink WE Langmuir; 2004 Oct; 20(21):9388-95. PubMed ID: 15461534 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the thermo- and pH-responsive assembly of triblock copolymers based on poly(ethylene glycol) and functionalized poly(ε-caprolactone). Safaei Nikouei N; Lavasanifar A Acta Biomater; 2011 Oct; 7(10):3708-18. PubMed ID: 21672641 [TBL] [Abstract][Full Text] [Related]
13. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release. Jia YG; Zhu XX ACS Appl Mater Interfaces; 2015 Nov; 7(44):24649-55. PubMed ID: 26479835 [TBL] [Abstract][Full Text] [Related]
14. Core-shell structure of degradable, thermosensitive polymeric micelles studied by small-angle neutron scattering. Ramzi A; Rijcken CJ; Veldhuis TF; Schwahn D; Hennink WE; van Nostrum CF J Phys Chem B; 2008 Jan; 112(3):784-92. PubMed ID: 18166030 [TBL] [Abstract][Full Text] [Related]
15. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels. Li Z; Zhang Z; Liu KL; Ni X; Li J Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676 [TBL] [Abstract][Full Text] [Related]
17. Core-shell structure, biodegradation, and drug release behavior of poly(lactic acid)/poly(ethylene glycol) block copolymer micelles tuned by macromolecular stereostructure. Ma C; Pan P; Shan G; Bao Y; Fujita M; Maeda M Langmuir; 2015 Feb; 31(4):1527-36. PubMed ID: 25555131 [TBL] [Abstract][Full Text] [Related]
18. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers. Kim SH; Tan JP; Fukushima K; Nederberg F; Yang YY; Waymouth RM; Hedrick JL Biomaterials; 2011 Aug; 32(23):5505-14. PubMed ID: 21529935 [TBL] [Abstract][Full Text] [Related]
19. Preparation and solution behavior of a thermoresponsive diblock copolymer of poly(ethyl glycidyl ether) and poly(ethylene oxide). Ogura M; Tokuda H; Imabayashi S; Watanabe M Langmuir; 2007 Aug; 23(18):9429-34. PubMed ID: 17676779 [TBL] [Abstract][Full Text] [Related]
20. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(epsilon-caprolactone) as drug carriers with enhanced properties. Zhang W; Li Y; Liu L; Sun Q; Shuai X; Zhu W; Chen Y Biomacromolecules; 2010 May; 11(5):1331-8. PubMed ID: 20405912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]