These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 21801258)
1. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Meyer E; Aglyamova GV; Matz MV Mol Ecol; 2011 Sep; 20(17):3599-616. PubMed ID: 21801258 [TBL] [Abstract][Full Text] [Related]
2. Early molecular responses of coral larvae to hyperthermal stress. Rodriguez-Lanetty M; Harii S; Hoegh-Guldberg O Mol Ecol; 2009 Dec; 18(24):5101-14. PubMed ID: 19900172 [TBL] [Abstract][Full Text] [Related]
3. The biology of coral metamorphosis: molecular responses of larvae to inducers of settlement and metamorphosis. Grasso LC; Negri AP; Fôret S; Saint R; Hayward DC; Miller DJ; Ball EE Dev Biol; 2011 May; 353(2):411-9. PubMed ID: 21338599 [TBL] [Abstract][Full Text] [Related]
4. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Polato NR; Altman NS; Baums IB Mol Ecol; 2013 Mar; 22(5):1366-82. PubMed ID: 23331636 [TBL] [Abstract][Full Text] [Related]
5. Using bacterial extract along with differential gene expression in Acropora millepora larvae to decouple the processes of attachment and metamorphosis. Siboni N; Abrego D; Seneca F; Motti CA; Andreakis N; Tebben J; Blackall LL; Harder T PLoS One; 2012; 7(5):e37774. PubMed ID: 22655067 [TBL] [Abstract][Full Text] [Related]
6. A multilocus, temperature stress-related gene expression profile assay in Acropora millepora, a dominant reef-building coral. Souter P; Bay LK; Andreakis N; Császár N; Seneca FO; van Oppen MJ Mol Ecol Resour; 2011 Mar; 11(2):328-34. PubMed ID: 21429140 [TBL] [Abstract][Full Text] [Related]
7. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. DeSalvo MK; Voolstra CR; Sunagawa S; Schwarz JA; Stillman JH; Coffroth MA; Szmant AM; Medina M Mol Ecol; 2008 Sep; 17(17):3952-71. PubMed ID: 18662230 [TBL] [Abstract][Full Text] [Related]
8. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral. Strader ME; Aglyamova GV; Matz MV BMC Genomics; 2018 Jan; 19(1):17. PubMed ID: 29301490 [TBL] [Abstract][Full Text] [Related]
9. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata. Portune KJ; Voolstra CR; Medina M; Szmant AM Mar Genomics; 2010 Mar; 3(1):51-62. PubMed ID: 21798197 [TBL] [Abstract][Full Text] [Related]
10. Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO₂-driven acidification during the initiation of calcification. Moya A; Huisman L; Ball EE; Hayward DC; Grasso LC; Chua CM; Woo HN; Gattuso JP; Forêt S; Miller DJ Mol Ecol; 2012 May; 21(10):2440-54. PubMed ID: 22490231 [TBL] [Abstract][Full Text] [Related]
11. P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants. Venn AA; Quinn J; Jones R; Bodnar A Aquat Toxicol; 2009 Jul; 93(4):188-95. PubMed ID: 19501419 [TBL] [Abstract][Full Text] [Related]
12. Rapid acclimation of juvenile corals to CO2 -mediated acidification by upregulation of heat shock protein and Bcl-2 genes. Moya A; Huisman L; Forêt S; Gattuso JP; Hayward DC; Ball EE; Miller DJ Mol Ecol; 2015 Jan; 24(2):438-52. PubMed ID: 25444080 [TBL] [Abstract][Full Text] [Related]
13. Red fluorescence in coral larvae is associated with a diapause-like state. Strader ME; Aglyamova GV; Matz MV Mol Ecol; 2016 Jan; 25(2):559-69. PubMed ID: 26600127 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress. Kenkel CD; Traylor MR; Wiedenmann J; Salih A; Matz MV Proc Biol Sci; 2011 Sep; 278(1718):2691-7. PubMed ID: 21270034 [TBL] [Abstract][Full Text] [Related]
15. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress. Rosic N; Kaniewska P; Chan CK; Ling EY; Edwards D; Dove S; Hoegh-Guldberg O BMC Genomics; 2014 Dec; 15():1052. PubMed ID: 25467196 [TBL] [Abstract][Full Text] [Related]
16. Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora. Siboni N; Abrego D; Motti CA; Tebben J; Harder T PLoS One; 2014; 9(3):e91082. PubMed ID: 24632854 [TBL] [Abstract][Full Text] [Related]
17. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Kenkel CD; Meyer E; Matz MV Mol Ecol; 2013 Aug; 22(16):4322-4334. PubMed ID: 23899402 [TBL] [Abstract][Full Text] [Related]
18. Symbiodinium identity alters the temperature-dependent settlement behaviour of Acropora millepora coral larvae before the onset of symbiosis. Winkler NS; Pandolfi JM; Sampayo EM Proc Biol Sci; 2015 Feb; 282(1801):20142260. PubMed ID: 25589607 [TBL] [Abstract][Full Text] [Related]
19. Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora. Rocker MM; Noonan S; Humphrey C; Moya A; Willis BL; Bay LK Mar Genomics; 2015 Dec; 24 Pt 3():313-8. PubMed ID: 26275825 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of reef coral resistance to future climate change. Palumbi SR; Barshis DJ; Traylor-Knowles N; Bay RA Science; 2014 May; 344(6186):895-8. PubMed ID: 24762535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]