BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 21801258)

  • 1. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure.
    Meyer E; Aglyamova GV; Matz MV
    Mol Ecol; 2011 Sep; 20(17):3599-616. PubMed ID: 21801258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early molecular responses of coral larvae to hyperthermal stress.
    Rodriguez-Lanetty M; Harii S; Hoegh-Guldberg O
    Mol Ecol; 2009 Dec; 18(24):5101-14. PubMed ID: 19900172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biology of coral metamorphosis: molecular responses of larvae to inducers of settlement and metamorphosis.
    Grasso LC; Negri AP; Fôret S; Saint R; Hayward DC; Miller DJ; Ball EE
    Dev Biol; 2011 May; 353(2):411-9. PubMed ID: 21338599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in the transcriptional response of threatened coral larvae to elevated temperatures.
    Polato NR; Altman NS; Baums IB
    Mol Ecol; 2013 Mar; 22(5):1366-82. PubMed ID: 23331636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using bacterial extract along with differential gene expression in Acropora millepora larvae to decouple the processes of attachment and metamorphosis.
    Siboni N; Abrego D; Seneca F; Motti CA; Andreakis N; Tebben J; Blackall LL; Harder T
    PLoS One; 2012; 7(5):e37774. PubMed ID: 22655067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multilocus, temperature stress-related gene expression profile assay in Acropora millepora, a dominant reef-building coral.
    Souter P; Bay LK; Andreakis N; Császár N; Seneca FO; van Oppen MJ
    Mol Ecol Resour; 2011 Mar; 11(2):328-34. PubMed ID: 21429140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.
    DeSalvo MK; Voolstra CR; Sunagawa S; Schwarz JA; Stillman JH; Coffroth MA; Szmant AM; Medina M
    Mol Ecol; 2008 Sep; 17(17):3952-71. PubMed ID: 18662230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral.
    Strader ME; Aglyamova GV; Matz MV
    BMC Genomics; 2018 Jan; 19(1):17. PubMed ID: 29301490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata.
    Portune KJ; Voolstra CR; Medina M; Szmant AM
    Mar Genomics; 2010 Mar; 3(1):51-62. PubMed ID: 21798197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO₂-driven acidification during the initiation of calcification.
    Moya A; Huisman L; Ball EE; Hayward DC; Grasso LC; Chua CM; Woo HN; Gattuso JP; Forêt S; Miller DJ
    Mol Ecol; 2012 May; 21(10):2440-54. PubMed ID: 22490231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants.
    Venn AA; Quinn J; Jones R; Bodnar A
    Aquat Toxicol; 2009 Jul; 93(4):188-95. PubMed ID: 19501419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid acclimation of juvenile corals to CO2 -mediated acidification by upregulation of heat shock protein and Bcl-2 genes.
    Moya A; Huisman L; Forêt S; Gattuso JP; Hayward DC; Ball EE; Miller DJ
    Mol Ecol; 2015 Jan; 24(2):438-52. PubMed ID: 25444080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red fluorescence in coral larvae is associated with a diapause-like state.
    Strader ME; Aglyamova GV; Matz MV
    Mol Ecol; 2016 Jan; 25(2):559-69. PubMed ID: 26600127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress.
    Kenkel CD; Traylor MR; Wiedenmann J; Salih A; Matz MV
    Proc Biol Sci; 2011 Sep; 278(1718):2691-7. PubMed ID: 21270034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress.
    Rosic N; Kaniewska P; Chan CK; Ling EY; Edwards D; Dove S; Hoegh-Guldberg O
    BMC Genomics; 2014 Dec; 15():1052. PubMed ID: 25467196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora.
    Siboni N; Abrego D; Motti CA; Tebben J; Harder T
    PLoS One; 2014; 9(3):e91082. PubMed ID: 24632854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments.
    Kenkel CD; Meyer E; Matz MV
    Mol Ecol; 2013 Aug; 22(16):4322-4334. PubMed ID: 23899402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symbiodinium identity alters the temperature-dependent settlement behaviour of Acropora millepora coral larvae before the onset of symbiosis.
    Winkler NS; Pandolfi JM; Sampayo EM
    Proc Biol Sci; 2015 Feb; 282(1801):20142260. PubMed ID: 25589607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora.
    Rocker MM; Noonan S; Humphrey C; Moya A; Willis BL; Bay LK
    Mar Genomics; 2015 Dec; 24 Pt 3():313-8. PubMed ID: 26275825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of reef coral resistance to future climate change.
    Palumbi SR; Barshis DJ; Traylor-Knowles N; Bay RA
    Science; 2014 May; 344(6186):895-8. PubMed ID: 24762535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.