These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21801477)

  • 21. Enzymatic degradation of supramolecular materials based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone).
    Luo H; Meng X; Cheng C; Dong Z; Zhang S; Li B
    J Phys Chem B; 2010 Apr; 114(13):4739-45. PubMed ID: 20235496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of novel biopolyesters from suberin and model comonomers.
    Sousa AF; Gandini A; Silvestre AJ; Pascoal Neto C
    ChemSusChem; 2008; 1(12):1020-5. PubMed ID: 19040255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the structural features of biobased linear polyester plasticizers on the crystallization of polylactides.
    Safari M; Kasmi N; Pisani C; Berthé V; Müller AJ; Habibi Y
    Int J Biol Macromol; 2022 Aug; 214():128-139. PubMed ID: 35700846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and hydrolytic degradation of poly(hexylene terephthalate-co-lactide) co-polyesters from melting polycondensation.
    Su J; Chen Y; Tan L
    J Biomater Sci Polym Ed; 2009; 20(1):99-114. PubMed ID: 19105903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyperbranched Aliphatic Polyester via Cross-Metathesis Polymerization: Synthesis and Postpolymerization Modification.
    Zeng FR; Ma JM; Sun LH; Zeng Z; Jiang H; Li ZL
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29250866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tacticity-induced changes in the micellization and degradation properties of poly(lactic acid)-block-poly(ethylene glycol) copolymers.
    Agatemor C; Shaver MP
    Biomacromolecules; 2013 Mar; 14(3):699-708. PubMed ID: 23402292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple grafting to enzymatically synthesized polyesters.
    Bilal MH; Alaneed R; Steiner J; Mäder K; Pietzsch M; Kressler J
    Methods Enzymol; 2019; 627():57-97. PubMed ID: 31630748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A rare example of the formation of polystyrene-grafted aliphatic polyester in one-pot by radical polymerization.
    Shi Y; Zheng Z; Agarwal S
    Chemistry; 2014 Jun; 20(24):7419-28. PubMed ID: 24806996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. No Strain, No Gain? Enzymatic Ring-Opening Polymerization of Strainless Aliphatic Macrolactones.
    Witt T; Häußler M; Mecking S
    Macromol Rapid Commun; 2017 Feb; 38(4):. PubMed ID: 28044380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications.
    Gigli M; Lotti N; Vercellino M; Visai L; Munari A
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():86-97. PubMed ID: 24268237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyhedral oligomeric silsesquioxane (POSS) suppresses enzymatic degradation of PCL-based polyurethanes.
    Gu X; Wu J; Mather PT
    Biomacromolecules; 2011 Aug; 12(8):3066-77. PubMed ID: 21675705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a slowly degrading biodegradable polyester-urethane for tissue engineering scaffolds.
    Henry JA; Simonet M; Pandit A; Neuenschwander P
    J Biomed Mater Res A; 2007 Sep; 82(3):669-79. PubMed ID: 17323319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzyme-catalyzed synthesis of sugar-containing monomers and linear polymers.
    Park OJ; Kim DY; Dordick JS
    Biotechnol Bioeng; 2000 Oct; 70(2):208-16. PubMed ID: 10972932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cocrystallization model for synthetic biodegradable poly(butylene adipate-co-butylene terephthalate).
    Cranston E; Kawada J; Raymond S; Morin FG; Marchessault RH
    Biomacromolecules; 2003; 4(4):995-9. PubMed ID: 12857084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biobased polyesters with composition-dependent thermomechanical properties: synthesis and characterization of poly(butylene succinate-co-butylene azelate).
    Mincheva R; Delangre A; Raquez JM; Narayan R; Dubois P
    Biomacromolecules; 2013 Mar; 14(3):890-9. PubMed ID: 23369072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydroxyapatite scaffolds infiltrated with thermally crosslinked polycaprolactone fumarate and polycaprolactone itaconate.
    Sharifi S; Shafieyan Y; Mirzadeh H; Bagheri-Khoulenjani S; Rabiee SM; Imani M; Atai M; Shokrgozar MA; Hatampoor A
    J Biomed Mater Res A; 2011 Aug; 98(2):257-67. PubMed ID: 21626657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone.
    Korley JN; Yazdi S; McHugh K; Kirk J; Anderson J; Putnam D
    Biomaterials; 2016 Aug; 98():41-52. PubMed ID: 27179432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers.
    Ou W; Qiu H; Chen Z; Xu K
    Biomaterials; 2011 Apr; 32(12):3178-88. PubMed ID: 21310479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and crystallizability of poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(ethylene glycol).
    Wang P; Liu L; Qu C; Wei Z; Qi M
    J Control Release; 2011 Nov; 152 Suppl 1():e240-2. PubMed ID: 22195883
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.