These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21801492)

  • 21. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential.
    Sipos I; Tretter L; Adam-Vizi V
    Neurochem Res; 2003 Oct; 28(10):1575-81. PubMed ID: 14570403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state.
    Kowaltowski AJ; Castilho RF; Vercesi AE
    Am J Physiol; 1995 Jul; 269(1 Pt 1):C141-7. PubMed ID: 7631741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flufenamic acid as an inducer of mitochondrial permeability transition.
    Jordani MC; Santos AC; Prado IM; Uyemura SA; Curti C
    Mol Cell Biochem; 2000 Jul; 210(1-2):153-8. PubMed ID: 10976768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial Complex I superoxide production is attenuated by uncoupling.
    Dlasková A; Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2008; 40(10):2098-109. PubMed ID: 18358763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III.
    Dröse S; Hanley PJ; Brandt U
    Biochim Biophys Acta; 2009 Jun; 1790(6):558-65. PubMed ID: 19364480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of copper and temperature on heart mitochondrial hydrogen peroxide production.
    Isei MO; Kamunde C
    Free Radic Biol Med; 2020 Feb; 147():114-128. PubMed ID: 31825803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria.
    Tretter L; Takacs K; Hegedus V; Adam-Vizi V
    J Neurochem; 2007 Feb; 100(3):650-63. PubMed ID: 17263793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria.
    Votyakova TV; Reynolds IJ
    J Neurochem; 2001 Oct; 79(2):266-77. PubMed ID: 11677254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
    Starkov AA; Fiskum G; Chinopoulos C; Lorenzo BJ; Browne SE; Patel MS; Beal MF
    J Neurosci; 2004 Sep; 24(36):7779-88. PubMed ID: 15356189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels.
    Wang J; Sun J; Qiao S; Li H; Che T; Wang C; An J
    Mol Med Rep; 2019 Nov; 20(5):4383-4390. PubMed ID: 31545457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates.
    Quinlan CL; Perevoshchikova IV; Hey-Mogensen M; Orr AL; Brand MD
    Redox Biol; 2013; 1(1):304-12. PubMed ID: 24024165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I.
    Batandier C; Leverve X; Fontaine E
    J Biol Chem; 2004 Apr; 279(17):17197-204. PubMed ID: 14963044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of superoxide-producing sites in isolated brain mitochondria.
    Kudin AP; Bimpong-Buta NY; Vielhaber S; Elger CE; Kunz WS
    J Biol Chem; 2004 Feb; 279(6):4127-35. PubMed ID: 14625276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes.
    Agarwal B; Dash RK; Stowe DF; Bosnjak ZJ; Camara AK
    Biochim Biophys Acta; 2014 Mar; 1837(3):354-65. PubMed ID: 24355434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
    Okoye CN; MacDonald-Jay N; Kamunde C
    Aquat Toxicol; 2019 Sep; 214():105264. PubMed ID: 31377504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactive oxygen species produced by liver mitochondria of rats in sepsis.
    Taylor DE; Ghio AJ; Piantadosi CA
    Arch Biochem Biophys; 1995 Jan; 316(1):70-6. PubMed ID: 7840680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide.
    Yan LJ; Sumien N; Thangthaeng N; Forster MJ
    Free Radic Res; 2013 Feb; 47(2):123-33. PubMed ID: 23205777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.