These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 21801601)

  • 1. Mitochondria in cancer: at the crossroads of life and death.
    Fogg VC; Lanning NJ; Mackeigan JP
    Chin J Cancer; 2011 Aug; 30(8):526-39. PubMed ID: 21801601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development.
    Bao X; Zhang J; Huang G; Yan J; Xu C; Dou Z; Sun C; Zhang H
    Cell Death Dis; 2021 Feb; 12(2):215. PubMed ID: 33637686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis.
    Sajnani K; Islam F; Smith RA; Gopalan V; Lam AK
    Biochimie; 2017 Apr; 135():164-172. PubMed ID: 28219702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs.
    Zhao T; Zhu Y; Morinibu A; Kobayashi M; Shinomiya K; Itasaka S; Yoshimura M; Guo G; Hiraoka M; Harada H
    Sci Rep; 2014 Jan; 4():3793. PubMed ID: 24452734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria and reactive oxygen species in renal cancer.
    Hervouet E; Simonnet H; Godinot C
    Biochimie; 2007 Sep; 89(9):1080-8. PubMed ID: 17466430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria and cancer: Warburg addressed.
    Wallace DC
    Cold Spring Harb Symp Quant Biol; 2005; 70():363-74. PubMed ID: 16869773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p53 Orchestrates Cancer Metabolism: Unveiling Strategies to Reverse the Warburg Effect.
    Abukwaik R; Vera-Siguenza E; Tennant D; Spill F
    Bull Math Biol; 2024 Aug; 86(10):124. PubMed ID: 39207627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gerometabolites: the pseudohypoxic aging side of cancer oncometabolites.
    Menendez JA; Alarcón T; Joven J
    Cell Cycle; 2014; 13(5):699-709. PubMed ID: 24526120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromanaging aerobic respiration and glycolysis in cancer cells.
    Orang AV; Petersen J; McKinnon RA; Michael MZ
    Mol Metab; 2019 May; 23():98-126. PubMed ID: 30837197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relevance of mitochondrial genetics and metabolism in cancer development.
    Gasparre G; Porcelli AM; Lenaz G; Romeo G
    Cold Spring Harb Perspect Biol; 2013 Feb; 5(2):. PubMed ID: 23378588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.
    El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F
    Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor suppressor WWOX moderates the mitochondrial respiratory complex.
    Choo A; O'Keefe LV; Lee CS; Gregory SL; Shaukat Z; Colella A; Lee K; Denton D; Richards RI
    Genes Chromosomes Cancer; 2015 Dec; 54(12):745-61. PubMed ID: 26390919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of mitochondrial dysfunction in cancer progression.
    Hsu CC; Tseng LM; Lee HC
    Exp Biol Med (Maywood); 2016 Jun; 241(12):1281-95. PubMed ID: 27022139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial metabolism-mediated redox regulation in cancer progression.
    Boese AC; Kang S
    Redox Biol; 2021 Jun; 42():101870. PubMed ID: 33509708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia, HIF1 and glucose metabolism in the solid tumour.
    Denko NC
    Nat Rev Cancer; 2008 Sep; 8(9):705-13. PubMed ID: 19143055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.