These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 21801601)

  • 21. Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity.
    Desideri E; Vegliante R; Ciriolo MR
    Cancer Lett; 2015 Jan; 356(2 Pt A):217-23. PubMed ID: 24614286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The interplay between MYC and HIF in the Warburg effect.
    Dang CV
    Ernst Schering Found Symp Proc; 2007; (4):35-53. PubMed ID: 18811052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production.
    Bell EL; Emerling BM; Ricoult SJ; Guarente L
    Oncogene; 2011 Jun; 30(26):2986-96. PubMed ID: 21358671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Revisiting the Warburg effect: historical dogma versus current understanding.
    Vaupel P; Multhoff G
    J Physiol; 2021 Mar; 599(6):1745-1757. PubMed ID: 33347611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondria and cancer: a growing role in apoptosis, cancer cell metabolism and dedifferentiation.
    Scatena R
    Adv Exp Med Biol; 2012; 942():287-308. PubMed ID: 22399428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance.
    Nagao A; Kobayashi M; Koyasu S; Chow CCT; Harada H
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K.
    Courtnay R; Ngo DC; Malik N; Ververis K; Tortorella SM; Karagiannis TC
    Mol Biol Rep; 2015 Apr; 42(4):841-51. PubMed ID: 25689954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondria in cancer.
    Kroemer G
    Oncogene; 2006 Aug; 25(34):4630-2. PubMed ID: 16892077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ammonia mediates mitochondrial uncoupling and promotes glycolysis via HIF-1 activation in human breast cancer MDA-MB-231 cells.
    Lu Y; Wang L; Ding W; Wang D; Wang X; Luo Q; Zhu L
    Biochem Biophys Res Commun; 2019 Oct; 519(1):153-159. PubMed ID: 31481238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways.
    Kumar S; Donti TR; Agnihotri N; Mehta K
    Int J Cancer; 2014 Jun; 134(12):2798-807. PubMed ID: 24477458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Qiliqiangxin attenuates hypoxia-induced injury in primary rat cardiac microvascular endothelial cells via promoting HIF-1α-dependent glycolysis.
    Wang Y; Han X; Fu M; Wang J; Song Y; Liu Y; Zhang J; Zhou J; Ge J
    J Cell Mol Med; 2018 May; 22(5):2791-2803. PubMed ID: 29502357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.
    Weinberg F; Hamanaka R; Wheaton WW; Weinberg S; Joseph J; Lopez M; Kalyanaraman B; Mutlu GM; Budinger GR; Chandel NS
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8788-93. PubMed ID: 20421486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells.
    Saito S; Lin YC; Tsai MH; Lin CS; Murayama Y; Sato R; Yokoyama KK
    Kaohsiung J Med Sci; 2015 Jun; 31(6):279-86. PubMed ID: 26043406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer.
    Verschoor ML; Wilson LA; Singh G
    Can J Physiol Pharmacol; 2010 Mar; 88(3):204-19. PubMed ID: 20393586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy.
    Yu L; Chen X; Wang L; Chen S
    Oncotarget; 2016 Jun; 7(25):38908-38926. PubMed ID: 26918353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of cancer cell metabolism by hypoxia-inducible factor 1.
    Semenza GL
    Semin Cancer Biol; 2009 Feb; 19(1):12-6. PubMed ID: 19114105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. α-Lactalbumin-oleic acid complex kills tumor cells by inducing excess energy metabolism but inhibiting mRNA expression of the related enzymes.
    Fang B; Zhang M; Ge KS; Xing HZ; Ren FZ
    J Dairy Sci; 2018 Jun; 101(6):4853-4863. PubMed ID: 29550120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of hypoxia on tumor metabolism.
    Kim JW; Gao P; Dang CV
    Cancer Metastasis Rev; 2007 Jun; 26(2):291-8. PubMed ID: 17415528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity.
    Uzhachenko R; Shanker A; Yarbrough WG; Ivanova AV
    Oncotarget; 2015 Aug; 6(25):20754-72. PubMed ID: 26246474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming.
    Jin J; Qiu S; Wang P; Liang X; Huang F; Wu H; Zhang B; Zhang W; Tian X; Xu R; Shi H; Wu X
    J Exp Clin Cancer Res; 2019 Aug; 38(1):377. PubMed ID: 31455352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.