BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21802039)

  • 1. Quadricep and hamstring activation during drop jumps with changes in drop height.
    Peng HT; Kernozek TW; Song CY
    Phys Ther Sport; 2011 Aug; 12(3):127-32. PubMed ID: 21802039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing.
    Kellis E; Kouvelioti V
    J Electromyogr Kinesiol; 2009 Feb; 19(1):55-64. PubMed ID: 17888681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training.
    Taube W; Leukel C; Lauber B; Gollhofer A
    Scand J Med Sci Sports; 2012 Oct; 22(5):671-83. PubMed ID: 21457355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gender differences in knee angle when landing from a drop-jump.
    Huston LJ; Vibert B; Ashton-Miller JA; Wojtys EM
    Am J Knee Surg; 2001; 14(4):215-9; discussion 219-20. PubMed ID: 11703033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of fatigue on tibial impact accelerations and knee kinematics in drop jumps.
    Moran KA; Marshall BM
    Med Sci Sports Exerc; 2006 Oct; 38(10):1836-42. PubMed ID: 17019307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of men's and women's strength to body mass ratio and varus/valgus knee angle during jump landings.
    Haines TL; McBride JM; Triplett NT; Skinner JW; Fairbrother KR; Kirby TJ
    J Sports Sci; 2011 Oct; 29(13):1435-42. PubMed ID: 21916796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in biomechanical properties during drop jumps of incremental height.
    Peng HT
    J Strength Cond Res; 2011 Sep; 25(9):2510-8. PubMed ID: 21869631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.
    Yeow CH; Lee PV; Goh JC
    Knee; 2009 Oct; 16(5):381-6. PubMed ID: 19250828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knee angular displacement and extensor muscle activity in telemark skiing and in ski-specific strength exercises.
    Nilsson J; Haugen P
    J Sports Sci; 2004 Apr; 22(4):357-64. PubMed ID: 15161109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle activation of vastus medialis obliquus and vastus lateralis during a dynamic leg press exercise with and without isometric hip adduction.
    Peng HT; Kernozek TW; Song CY
    Phys Ther Sport; 2013 Feb; 14(1):44-9. PubMed ID: 23312731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular Strategies in Stretch-Shortening Exercises with Increasing Drop Heights: The Role of Muscle Coactivation in Leg Stiffness and Power Propulsion.
    Di Giminiani R; Giovannelli A; Capuano L; Izzicupo P; Di Blasio A; Masedu F
    Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33233323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical comparisons of single- and double-legged drop jumps with changes in drop height.
    Wang LI; Peng HT
    Int J Sports Med; 2014 Jun; 35(6):522-7. PubMed ID: 23771829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in stature following plyometric drop-jump and pendulum exercises.
    Fowler NE; Lees A; Reilly T
    Ergonomics; 1997 Dec; 40(12):1279-86. PubMed ID: 9416012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ground reaction forces associated with an effective elementary school based jumping intervention.
    McKay H; Tsang G; Heinonen A; MacKelvie K; Sanderson D; Khan KM
    Br J Sports Med; 2005 Jan; 39(1):10-4. PubMed ID: 15618332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonist muscle co-contraction during a double-leg landing maneuver at two heights.
    Mokhtarzadeh H; Yeow CH; Goh JCH; Oetomo D; Ewing K; Lee PVS
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1382-1393. PubMed ID: 28836455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sagittal knee joint kinematics and energetics in response to different landing heights and techniques.
    Yeow CH; Lee PV; Goh JC
    Knee; 2010 Mar; 17(2):127-31. PubMed ID: 19720537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics.
    Myer GD; Ford KR; McLean SG; Hewett TE
    Am J Sports Med; 2006 Mar; 34(3):445-55. PubMed ID: 16282579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance.
    Horita T; Komi PV; Nicol C; Kyröläinen H
    Eur J Appl Physiol; 2002 Nov; 88(1-2):76-84. PubMed ID: 12436273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does endurance fatigue increase the risk of injury when performing drop jumps?
    Moran KA; Clarke M; Reilly F; Wallace ES; Brabazon D; Marshall B
    J Strength Cond Res; 2009 Aug; 23(5):1448-55. PubMed ID: 19620920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical differences between unilateral and bilateral landings from a jump: gender differences.
    Pappas E; Hagins M; Sheikhzadeh A; Nordin M; Rose D
    Clin J Sport Med; 2007 Jul; 17(4):263-8. PubMed ID: 17620779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.