These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 21802107)
1. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes. Bagastyo AY; Radjenovic J; Mu Y; Rozendal RA; Batstone DJ; Rabaey K Water Res; 2011 Oct; 45(16):4951-9. PubMed ID: 21802107 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. Radjenovic J; Bagastyo A; Rozendal RA; Mu Y; Keller J; Rabaey K Water Res; 2011 Feb; 45(4):1579-86. PubMed ID: 21167547 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes. Bagastyo AY; Batstone DJ; Rabaey K; Radjenovic J Water Res; 2013 Jan; 47(1):242-50. PubMed ID: 23137830 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH. Bagastyo AY; Batstone DJ; Kristiana I; Gernjak W; Joll C; Radjenovic J Water Res; 2012 Nov; 46(18):6104-12. PubMed ID: 22995242 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the formation of oxidants and by-products using Pt/Ti, RuO2/Ti, and IrO2/Ti electrodes in the electrochemical process. Yoon Y; Cho E; Jung Y; Kwon M; Yoon J; Kang JW Environ Technol; 2015; 36(1-4):317-26. PubMed ID: 25514133 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes. Maharana D; Xu Z; Niu J; Rao NN Chemosphere; 2015 Oct; 136():145-52. PubMed ID: 25981800 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical degradation of the β-blocker metoprolol by Ti/Ru 0.7 Ir 0.3 O 2 and Ti/SnO 2-Sb electrodes. Radjenovic J; Escher BI; Rabaey K Water Res; 2011 May; 45(10):3205-14. PubMed ID: 21496862 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. Pikaar I; Rozendal RA; Yuan Z; Keller J; Rabaey K Water Res; 2011 Nov; 45(17):5381-8. PubMed ID: 21885081 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2-coated titanium and graphite anodes. Govindaraj M; Muthukumar M; Raju GB Environ Technol; 2010 Dec; 31(14):1613-22. PubMed ID: 21275257 [TBL] [Abstract][Full Text] [Related]
10. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Li XY; Cui YH; Feng YJ; Xie ZM; Gu JD Water Res; 2005 May; 39(10):1972-81. PubMed ID: 15882890 [TBL] [Abstract][Full Text] [Related]
11. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment. Pérez G; Fernández-Alba AR; Urtiaga AM; Ortiz I Water Res; 2010 May; 44(9):2763-72. PubMed ID: 20304458 [TBL] [Abstract][Full Text] [Related]
12. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes. Petersen MA; Sale TC; Reardon KF Chemosphere; 2007 Apr; 67(8):1573-81. PubMed ID: 17234239 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes. Lin H; Niu J; Ding S; Zhang L Water Res; 2012 May; 46(7):2281-9. PubMed ID: 22381981 [TBL] [Abstract][Full Text] [Related]
14. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Feng YJ; Li XY Water Res; 2003 May; 37(10):2399-407. PubMed ID: 12727251 [TBL] [Abstract][Full Text] [Related]
15. Performance of three different anodes in electrochemical degradation of 4-para-nitrophenol. Murugaesan P; Aravind P; Muniyandi NG; Kandasamy S Environ Technol; 2015; 36(20):2618-27. PubMed ID: 25885262 [TBL] [Abstract][Full Text] [Related]
16. [Selection of electrochemical anodic materials for PFOA degradation and its mechanism]. Zhuo QF; Deng SB; Xu ZC; Yu G Huan Jing Ke Xue; 2014 May; 35(5):1810-6. PubMed ID: 25055671 [TBL] [Abstract][Full Text] [Related]
17. Assessing the electrochemical degradation of reactive orange 84 with Ti/IrO Pacheco-Álvarez M; Fuentes-Ramírez R; Brillas E; Peralta-Hernández JM Chemosphere; 2023 Oct; 339():139666. PubMed ID: 37532204 [TBL] [Abstract][Full Text] [Related]
18. Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9-C10) by Ti/SnO2-Sb-Ce, Ti/SnO2-Sb/Ce-PbO2, and Ti/BDD electrodes. Lin H; Niu J; Xu J; Huang H; Li D; Yue Z; Feng C Environ Sci Technol; 2013 Nov; 47(22):13039-46. PubMed ID: 24164589 [TBL] [Abstract][Full Text] [Related]
19. Insights of ibuprofen electro-oxidation on metal-oxide-coated Ti anodes: Kinetics, energy consumption and reaction mechanisms. Wang C; Yu Y; Yin L; Niu J; Hou LA Chemosphere; 2016 Nov; 163():584-591. PubMed ID: 27567158 [TBL] [Abstract][Full Text] [Related]
20. Electrogenerated singlet oxygen and reactive chlorine species enhancing volatile fatty acids production from co-fermentation of waste activated sludge and food waste: The key role of metal oxide coated electrodes. Lin Q; Xi S; Cheng B; Jiang J; Zan F; Tang Y; Li Y; Khanal SK; Wang Z; Chen G; Guo G Water Res; 2024 Aug; 260():121953. PubMed ID: 38901317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]