These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21802405)

  • 1. Hydrogen-bond energetics drive helix formation in membrane interfaces.
    Almeida PF; Ladokhin AS; White SH
    Biochim Biophys Acta; 2012 Feb; 1818(2):178-82. PubMed ID: 21802405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin.
    Ladokhin AS; White SH
    J Mol Biol; 1999 Jan; 285(4):1363-9. PubMed ID: 9917380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model.
    Wimley WC; Hristova K; Ladokhin AS; Silvestro L; Axelsen PH; White SH
    J Mol Biol; 1998 Apr; 277(5):1091-110. PubMed ID: 9571025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of the coil-alpha-helix transition of amphipathic peptides in a membrane environment: the role of vesicle curvature.
    Wieprecht T; Beyermann M; Seelig J
    Biophys Chem; 2002 May; 96(2-3):191-201. PubMed ID: 12034440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimentally determined hydrophobicity scale for proteins at membrane interfaces.
    Wimley WC; White SH
    Nat Struct Biol; 1996 Oct; 3(10):842-8. PubMed ID: 8836100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial folding and membrane insertion of a designed helical peptide.
    Ladokhin AS; White SH
    Biochemistry; 2004 May; 43(19):5782-91. PubMed ID: 15134452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium.
    Wieprecht T; Apostolov O; Beyermann M; Seelig J
    J Mol Biol; 1999 Dec; 294(3):785-94. PubMed ID: 10610796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifting hydrogen bonds may produce flexible transmembrane helices.
    Cao Z; Bowie JU
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8121-6. PubMed ID: 22566663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions.
    Ladokhin AS; White SH
    J Mol Biol; 2001 Jun; 309(3):543-52. PubMed ID: 11397078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of hydrogen bonds in peptides.
    Sheu SY; Yang DY; Selzle HL; Schlag EW
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12683-7. PubMed ID: 14559970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How hydrogen bonds shape membrane protein structure.
    White SH
    Adv Protein Chem; 2005; 72():157-72. PubMed ID: 16581376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing transmembrane alpha-helices that insert spontaneously.
    Wimley WC; White SH
    Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding.
    Kentsis A; Sosnick TR
    Biochemistry; 1998 Oct; 37(41):14613-22. PubMed ID: 9772190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of helix formation in small peptides of varying length in vacuo, in implicit solvent, and in explicit solvent.
    Wang X; Deng B; Sun Z
    J Mol Model; 2018 Dec; 25(1):3. PubMed ID: 30542771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of hydrogen bonding and helix-lipid interactions in transmembrane helix association.
    Lee J; Im W
    J Am Chem Soc; 2008 May; 130(20):6456-62. PubMed ID: 18422318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength of Calpha-H...O=C hydrogen bonds in transmembrane proteins.
    Park H; Yoon J; Seok C
    J Phys Chem B; 2008 Jan; 112(3):1041-8. PubMed ID: 18154287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane protein folding and stability: physical principles.
    White SH; Wimley WC
    Annu Rev Biophys Biomol Struct; 1999; 28():319-65. PubMed ID: 10410805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding protein hydrogen bond formation with kinetic H/D amide isotope effects.
    Krantz BA; Srivastava AK; Nauli S; Baker D; Sauer RT; Sosnick TR
    Nat Struct Biol; 2002 Jun; 9(6):458-63. PubMed ID: 11979278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.