BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21802757)

  • 1. Quantification of ochratoxin A-producing molds in food products by SYBR Green and TaqMan real-time PCR methods.
    Rodríguez A; Rodríguez M; Luque MI; Justesen AF; Córdoba JJ
    Int J Food Microbiol; 2011 Oct; 149(3):226-35. PubMed ID: 21802757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of real-time PCR methods to quantify patulin-producing molds in food products.
    Rodríguez A; Luque MI; Andrade MJ; Rodríguez M; Asensio MA; Córdoba JJ
    Food Microbiol; 2011 Sep; 28(6):1190-9. PubMed ID: 21645819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.
    Rodríguez A; Rodríguez M; Luque MI; Martín A; Córdoba JJ
    Food Microbiol; 2012 Aug; 31(1):89-99. PubMed ID: 22475946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a multiplex real-time PCR to quantify aflatoxin, ochratoxin A and patulin producing molds in foods.
    Rodríguez A; Rodríguez M; Andrade MJ; Córdoba JJ
    Int J Food Microbiol; 2012 Apr; 155(1-2):10-8. PubMed ID: 22326179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of ochratoxin A and ochratoxin-producing fungi in traditional salami manufactured in Northern Italy.
    Merla C; Andreoli G; Garino C; Vicari N; Tosi G; Guglielminetti ML; Moretti A; Biancardi A; Arlorio M; Fabbi M
    Mycotoxin Res; 2018 May; 34(2):107-116. PubMed ID: 29299825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Duplex real-time PCR method with internal amplification control for quantification of verrucosidin producing molds in dry-ripened foods.
    Rodríguez A; Córdoba JJ; Werning ML; Andrade MJ; Rodríguez M
    Int J Food Microbiol; 2012 Feb; 153(1-2):85-91. PubMed ID: 22119450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.
    Rodríguez A; Werning ML; Rodríguez M; Bermúdez E; Córdoba JJ
    Food Microbiol; 2012 Dec; 32(2):397-405. PubMed ID: 22986206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Ochratoxin Biosynthetic Genes.
    Gallo A; Perrone G
    Methods Mol Biol; 2017; 1542():191-200. PubMed ID: 27924539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplex real-time PCR method for detection and quantification of mycotoxigenic fungi belonging to three different genera.
    Vegi A; Wolf-Hall CE
    J Food Sci; 2013 Jan; 78(1):M70-6. PubMed ID: 23278665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the molecular diagnosis of ochratoxin A-producing fungi.
    Niessen L; Schmidt H; Mühlencoert E; Färber P; Karolewiez A; Geisen R
    Food Addit Contam; 2005 Apr; 22(4):324-34. PubMed ID: 16019802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes.
    Zhang X; Li Y; Wang H; Gu X; Zheng X; Wang Y; Diao J; Peng Y; Zhang H
    Toxins (Basel); 2016 Nov; 8(11):. PubMed ID: 27845758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ochratoxin A producing species in the genus Penicillium.
    Cabañes FJ; Bragulat MR; Castellá G
    Toxins (Basel); 2010 May; 2(5):1111-20. PubMed ID: 22069629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A PCR method to identify ochratoxin A-producing Aspergillus westerdijkiae strains on dried and aged foods.
    Susca A; Anelli P; Haidukowski M; Probyn CE; Epifani F; Logrieco AF; Moretti A; Proctor RH
    Int J Food Microbiol; 2021 Apr; 344():109113. PubMed ID: 33652337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting a polyketide synthase gene for Aspergillus carbonarius quantification and ochratoxin A assessment in grapes using real-time PCR.
    Atoui A; Mathieu F; Lebrihi A
    Int J Food Microbiol; 2007 Apr; 115(3):313-8. PubMed ID: 17291614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a multiplex PCR assay for concurrent detection of four major mycotoxigenic fungi from foods.
    Rashmi R; Ramana MV; Shylaja R; Uppalapati SR; Murali HS; Batra HV
    J Appl Microbiol; 2013 Mar; 114(3):819-27. PubMed ID: 23216688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a molecular detection and differentiation system for ochratoxin A producing Penicillium species and its application to analyse the occurrence of Penicillium nordicum in cured meats.
    Bogs C; Battilani P; Geisen R
    Int J Food Microbiol; 2006 Mar; 107(1):39-47. PubMed ID: 16289405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex Detection of Toxigenic Penicillium Species.
    Rodríguez A; Córdoba JJ; Rodríguez M; Andrade MJ
    Methods Mol Biol; 2017; 1542():293-309. PubMed ID: 27924546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobiota and toxigenic Penicillium species on two Spanish dry-cured ham manufacturing plants.
    Alapont C; López-Mendoza MC; Gil JV; Martínez-Culebras PV
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(1):93-104. PubMed ID: 24279369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of reference genes to quantify relative expression of ochratoxin A-related genes by Penicillium nordicum in dry-cured ham.
    Bernáldez V; Córdoba JJ; Andrade MJ; Alía A; Rodríguez A
    Food Microbiol; 2017 Dec; 68():104-111. PubMed ID: 28800817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific detection of Aspergillus carbonarius by SYBR Green and TaqMan quantitative PCR assays based on the multicopy ITS2 region of the rRNA gene.
    González-Salgado A; Patiño B; Gil-Serna J; Vázquez C; González-Jaén MT
    FEMS Microbiol Lett; 2009 Jun; 295(1):57-66. PubMed ID: 19473251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.