These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21802848)

  • 1. Combining LCT tools for the optimization of an industrial process: material and energy flow analysis and best available techniques.
    Rodríguez MT; Andrade LC; Bugallo PM; Long JJ
    J Hazard Mater; 2011 Sep; 192(3):1705-19. PubMed ID: 21802848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards sustainable mobile systems configurations: Application to a tuna purse seiner.
    García Rellán A; Vázquez Brea C; Bello Bugallo PM
    Sci Total Environ; 2018 Aug; 631-632():1623-1637. PubMed ID: 29727986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable production of marine equipment in a circular economy: deepening in material and energy flows, best available techniques and toxicological impacts.
    Zapelloni G; García Rellán A; Bello Bugallo PM
    Sci Total Environ; 2019 Oct; 687():991-1010. PubMed ID: 31412502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable development of process facilities: state-of-the-art review of pollution prevention frameworks.
    Hossain KA; Khan FI; Hawboldt K
    J Hazard Mater; 2008 Jan; 150(1):4-20. PubMed ID: 17923292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UPIOM: a new tool of MFA and its application to the flow of iron and steel associated with car production.
    Nakamura S; Kondo Y; Matsubae K; Nakajima K; Nagasaka T
    Environ Sci Technol; 2011 Feb; 45(3):1114-20. PubMed ID: 21174465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cumulative energy demand as predictor for the environmental burden of commodity production.
    Huijbregts MA; Hellweg S; Frischknecht R; Hendriks HW; Hungerbühler K; Hendriks AJ
    Environ Sci Technol; 2010 Mar; 44(6):2189-96. PubMed ID: 20108964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond BAT: selecting optimal combinations of available techniques, with an example from the limestone industry.
    Bréchet T; Tulkens H
    J Environ Manage; 2009 Apr; 90(5):1790-801. PubMed ID: 19108944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment-driven selection of industrial ecology strategies.
    Ardente F; Cellura M; Lo Brano V; Mistretta M
    Integr Environ Assess Manag; 2010 Jan; 6(1):52-60. PubMed ID: 19558196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating sustainable towns from Chinese villages: a system modeling approach.
    Levine RS; Hughes MT; Ryan Mather C; Yanarella EJ
    J Environ Manage; 2008 Apr; 87(2):305-16. PubMed ID: 17854975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the slaughterhouses in Galicia (NW Spain).
    Bugallo PM; Andrade LC; de la Torre MA; López RT
    Sci Total Environ; 2014 May; 481():656-61. PubMed ID: 24342494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The joint use of LCA and emergy evaluation for the analysis of two Italian wine farms.
    Pizzigallo AC; Granai C; Borsa S
    J Environ Manage; 2008 Jan; 86(2):396-406. PubMed ID: 17097798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergy analysis of an industrial park: the case of Dalian, China.
    Geng Y; Zhang P; Ulgiati S; Sarkis J
    Sci Total Environ; 2010 Oct; 408(22):5273-83. PubMed ID: 20805000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable agricultural practices: energy inputs and outputs, pesticide, fertilizer and greenhouse gas management.
    Wang YW
    Asia Pac J Clin Nutr; 2009; 18(4):498-500. PubMed ID: 19965338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and applications.
    Rebitzer G; Ekvall T; Frischknecht R; Hunkeler D; Norris G; Rydberg T; Schmidt WP; Suh S; Weidema BP; Pennington DW
    Environ Int; 2004 Jul; 30(5):701-20. PubMed ID: 15051246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-centered approach to early planning and design of an eco-industrial park around an oil refinery.
    Zhang X; Strømman AH; Solli C; Hertwich EG
    Environ Sci Technol; 2008 Jul; 42(13):4958-63. PubMed ID: 18678033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the US decision support tool for materials and waste management.
    Thorneloe SA; Weitz K; Jambeck J
    Waste Manag; 2007; 27(8):1006-20. PubMed ID: 17433663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards zero industrial waste: Utilisation of brick dust waste in sustainable construction.
    Kinuthia JM; Nidzam RM
    Waste Manag; 2011 Aug; 31(8):1867-78. PubMed ID: 21550223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative life-cycle assessments for biomass-to-ethanol production from different regional feedstocks.
    Kemppainen AJ; Shonnard DR
    Biotechnol Prog; 2005; 21(4):1075-84. PubMed ID: 16080686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Industrial sustainability of competing wood energy options in Canada.
    Ackom EK; Mabee WE; Saddler JN
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2259-72. PubMed ID: 20533096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A methodology for creating greenways through multidisciplinary sustainable landscape planning.
    Pena SB; Abreu MM; Teles R; Espírito-Santo MD
    J Environ Manage; 2010; 91(4):970-83. PubMed ID: 20056526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.