These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21802911)

  • 1. Bacterial-growth inhibiting properties of multilayers formed with modified polyvinylamine.
    Illergård J; Wågberg L; Ek M
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):115-20. PubMed ID: 21802911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of antibacterial properties of polyvinylamine (PVAm) with different charge densities and hydrophobic modifications.
    Westman EH; Ek M; Enarsson LE; Wågberg L
    Biomacromolecules; 2009 Jun; 10(6):1478-83. PubMed ID: 19391584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial adhesion to polyvinylamine-modified nanocellulose films.
    Henschen J; Larsson PA; Illergård J; Ek M; Wågberg L
    Colloids Surf B Biointerfaces; 2017 Mar; 151():224-231. PubMed ID: 28013166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of hydrophobically modified polyvinylamines: adsorption behavior at charged surfaces and the formation of polyelectrolyte multilayers with polyacrylic acid.
    Illergård J; Enarsson LE; Wågberg L; Ek M
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):425-33. PubMed ID: 20356188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact-active antibacterial aerogels from cellulose nanofibrils.
    Henschen J; Illergård J; Larsson PA; Ek M; Wågberg L
    Colloids Surf B Biointerfaces; 2016 Oct; 146():415-22. PubMed ID: 27391038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Cellulose Charge on Bacteria Adhesion and Viability to PVAm/CNF/PVAm-Modified Cellulose Model Surfaces.
    Chen C; Petterson T; Illergård J; Ek M; Wågberg L
    Biomacromolecules; 2019 May; 20(5):2075-2083. PubMed ID: 30901196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic approaches on the antibacterial activity of poly(acrylic acid) copolymers.
    Gratzl G; Walkner S; Hild S; Hassel AW; Weber HK; Paulik C
    Colloids Surf B Biointerfaces; 2015 Feb; 126():98-105. PubMed ID: 25543987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyvinylamine-G-galactose is a route to bioactivated silica surfaces.
    Mokhtari H; Pelton R; Jin L
    J Colloid Interface Sci; 2014 Jan; 413():86-91. PubMed ID: 24183434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient antibacterial surface grafted with a triclosan-decorated poly(N-hydroxyethylacrylamide) brush.
    Wu HX; Tan L; Tang ZW; Yang MY; Xiao JY; Liu CJ; Zhuo RX
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7008-15. PubMed ID: 25756367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyion multilayers with precise surface charge control for antifouling.
    Zhu X; Jańczewski D; Guo S; Lee SS; Parra Velandia FJ; Teo SL; He T; Puniredd SR; Vancso GJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):852-61. PubMed ID: 25485625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reusable nanoengineered surfaces for bacterial recruitment and decontamination.
    Ista LK; Yu Q; Parthasarathy A; Schanze KS; López GP
    Biointerphases; 2016 Mar; 11(1):019003. PubMed ID: 26739292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles.
    Lee D; Cohen RE; Rubner MF
    Langmuir; 2005 Oct; 21(21):9651-9. PubMed ID: 16207049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations.
    Lichter JA; Rubner MF
    Langmuir; 2009 Jul; 25(13):7686-94. PubMed ID: 19317389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable and efficient loading of silver nanoparticles in spherical polyelectrolyte brushes and the antibacterial effects.
    Liu X; Xu Y; Wang X; Shao M; Xu J; Wang J; Li L; Zhang R; Guo X
    Colloids Surf B Biointerfaces; 2015 Mar; 127():148-54. PubMed ID: 25677338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial activities effectuated by co-continuous epoxy-based polymer materials.
    Kubo T; Yasuda K; Tominaga Y; Otsuka K; Hosoya K
    Colloids Surf B Biointerfaces; 2013 Jul; 107():53-8. PubMed ID: 23466542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraordinary adhesion of phenylboronic acid derivatives of polyvinylamine to wet cellulose: a colloidal probe microscopy investigation.
    Notley SM; Chen W; Pelton R
    Langmuir; 2009 Jun; 25(12):6898-904. PubMed ID: 19341294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro antibacterial and cytotoxicity assay of multilayered polyelectrolyte-functionalized stainless steel.
    Shi Z; Neoh KG; Zhong SP; Yung LY; Kang ET; Wang W
    J Biomed Mater Res A; 2006 Mar; 76(4):826-34. PubMed ID: 16345094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-amplified exponential growth multilayers: a facile method to develop hierarchical micro- and nanostructured surfaces.
    Fu J; Ji J; Shen L; Kuller A; Rosenhahn A; Shen J; Grunze M
    Langmuir; 2009 Jan; 25(2):672-5. PubMed ID: 19177642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependence of the properties of hydrophobically modified polyvinylamine.
    Chen X; Wang Y; Pelton R
    Langmuir; 2005 Dec; 21(25):11673-7. PubMed ID: 16316099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nisin-activated hydrophobic and hydrophilic surfaces: assessment of peptide adsorption and antibacterial activity against some food pathogens.
    Karam L; Jama C; Mamede AS; Boukla S; Dhulster P; Chihib NE
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10321-8. PubMed ID: 24092009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.