These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21803159)

  • 1. ²⁶Mg labeling of the sea urchin regenerating spine: Insights into echinoderm biomineralization process.
    Gorzelak P; Stolarski J; Dubois P; Kopp C; Meibom A
    J Struct Biol; 2011 Oct; 176(1):119-26. PubMed ID: 21803159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrascale and microscale growth dynamics of the cidaroid spine of Phyllacanthus imperialis revealed by ²⁶Mg labeling and NanoSIMS isotopic imaging.
    Gorzelak P; Stolarski J; Dery A; Dubois P; Escrig S; Meibom A
    J Morphol; 2014 Jul; 275(7):788-96. PubMed ID: 24595980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sea urchin growth dynamics at microstructural length scale revealed by Mn-labeling and cathodoluminescence imaging.
    Gorzelak P; Dery A; Dubois P; Stolarski J
    Front Zool; 2017; 14():42. PubMed ID: 28855950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ocean acidification and diet on thickness and carbonate elemental composition of the test of juvenile sea urchins.
    Asnaghi V; Mangialajo L; Gattuso JP; Francour P; Privitera D; Chiantore M
    Mar Environ Res; 2014 Feb; 93():78-84. PubMed ID: 24050836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of seawater chemistry (Mg
    Kołbuk D; Dubois P; Stolarski J; Gorzelak P
    Mar Environ Res; 2019 Mar; 145():22-26. PubMed ID: 30777345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. I. Cell types without spherules.
    Heatfield BM; Travis DF
    J Morphol; 1975 Jan; 145(1):13-49. PubMed ID: 1111423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, composition and mechanical relations to function in sea urchin spine.
    Moureaux C; Pérez-Huerta A; Compère P; Zhu W; Leloup T; Cusack M; Dubois P
    J Struct Biol; 2010 Apr; 170(1):41-9. PubMed ID: 20064619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification.
    Martin S; Richier S; Pedrotti ML; Dupont S; Castejon C; Gerakis Y; Kerros ME; Oberhänsli F; Teyssié JL; Jeffree R; Gattuso JP
    J Exp Biol; 2011 Apr; 214(Pt 8):1357-68. PubMed ID: 21430213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of the calcareous skeleton during regeneration of spines of the sea urchin, strongylocentrotus purpuratus (stimpson): A light and scanning electron microscopic study.
    Heatfield BM
    J Morphol; 1971 May; 134(1):57-89. PubMed ID: 30366494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomineralization on crinoid echinoderms. Characterization of crinoid skeletal elements using TEM and STEM microanalysis.
    Blake DF; Peacor DR
    Scan Electron Microsc; 1981; (Pt 3):321-8. PubMed ID: 7330580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons.
    Gorzelak P; Stolarski J; Mazur M; Meibom A
    Geobiology; 2013 Jan; 11(1):29-43. PubMed ID: 23121244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High ordered biomineralization induced by carbon nanoparticles in the sea urchin Paracentrotus lividus.
    Manno D; Carata E; Tenuzzo BA; Panzarini E; Buccolieri A; Filippo E; Rossi M; Serra A; Dini L
    Nanotechnology; 2012 Dec; 23(49):495104. PubMed ID: 23165288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered stereom structure in sea urchin tubercles: High capability for energy dissipation.
    Ji HM; Qi QJ; Liang SM; Yu H; Li XW
    Acta Biomater; 2022 Sep; 150():310-323. PubMed ID: 35907559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Composition and Microstructural Morphology of Spines and Tests of Three Common Sea Urchins Species of the Sublittoral Zone of the Mediterranean Sea.
    Varkoulis A; Voulgaris K; Zaoutsos S; Stratakis A; Vafidis D
    Animals (Basel); 2020 Aug; 10(8):. PubMed ID: 32759777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (I): Methodology.
    Yang T; Wu Z; Chen H; Zhu Y; Li L
    Acta Biomater; 2020 Apr; 107():204-217. PubMed ID: 32109599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants.
    Vecchio KS; Zhang X; Massie JB; Wang M; Kim CW
    Acta Biomater; 2007 Sep; 3(5):785-93. PubMed ID: 17512809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echinoid skeleton: an insight on the species-specific pattern of the
    Perricone V; Cesarano P; Mancosu A; Asnicar D; Bravi S; Marmo F
    J R Soc Interface; 2023 Feb; 20(199):20220673. PubMed ID: 36722170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexagonal Voronoi pattern detected in the microstructural design of the echinoid skeleton.
    Perricone V; Grun TB; Rendina F; Marmo F; Candia Carnevali MD; Kowalewski M; Facchini A; De Stefano M; Santella L; Langella C; Micheletti A
    J R Soc Interface; 2022 Aug; 19(193):20220226. PubMed ID: 35946165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteins and saccharides of the sea urchin organic matrix of mineralization: characterization and localization in the spine skeleton.
    Ameye L; De Becker G; Killian C; Wilt F; Kemps R; Kuypers S; Dubois P
    J Struct Biol; 2001 Apr; 134(1):56-66. PubMed ID: 11469877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of seawater Mg
    Kołbuk D; Di Giglio S; M'Zoudi S; Dubois P; Stolarski J; Gorzelak P
    Geobiology; 2020 Nov; 18(6):710-724. PubMed ID: 32772500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.