These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

880 related articles for article (PubMed ID: 21803296)

  • 1. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.
    Folmes CD; Nelson TJ; Martinez-Fernandez A; Arrell DK; Lindor JZ; Dzeja PP; Ikeda Y; Perez-Terzic C; Terzic A
    Cell Metab; 2011 Aug; 14(2):264-71. PubMed ID: 21803296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition.
    Son MJ; Jeong BR; Kwon Y; Cho YS
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2512-8. PubMed ID: 23939289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells.
    Folmes CD; Martinez-Fernandez A; Faustino RS; Yamada S; Perez-Terzic C; Nelson TJ; Terzic A
    J Cardiovasc Transl Res; 2013 Feb; 6(1):10-21. PubMed ID: 23247633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy metabolism in nuclear reprogramming.
    Folmes CD; Nelson TJ; Terzic A
    Biomark Med; 2011 Dec; 5(6):715-29. PubMed ID: 22103608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolome and metaboproteome remodeling in nuclear reprogramming.
    Folmes CD; Arrell DK; Zlatkovic-Lindor J; Martinez-Fernandez A; Perez-Terzic C; Nelson TJ; Terzic A
    Cell Cycle; 2013 Aug; 12(15):2355-65. PubMed ID: 23839047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.
    Prigione A; Rohwer N; Hoffmann S; Mlody B; Drews K; Bukowiecki R; Blümlein K; Wanker EE; Ralser M; Cramer T; Adjaye J
    Stem Cells; 2014 Feb; 32(2):364-76. PubMed ID: 24123565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.
    Menendez JA; Vellon L; Oliveras-Ferraros C; Cufí S; Vazquez-Martin A
    Cell Cycle; 2011 Nov; 10(21):3658-77. PubMed ID: 22052357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Glycolytic Activity Enhances Stem Cell Reprogramming of Fahd1-KO Mouse Embryonic Fibroblasts.
    Salti A; Etemad S; Cubero MS; Albertini E; Kovacs-Szalka B; Holzknecht M; Cappuccio E; Cavinato M; Edenhofer F; Jansen Dürr P
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial regulation in pluripotent stem cells.
    Xu X; Duan S; Yi F; Ocampo A; Liu GH; Izpisua Belmonte JC
    Cell Metab; 2013 Sep; 18(3):325-32. PubMed ID: 23850316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells.
    Vazquez-Martin A; Corominas-Faja B; Cufi S; Vellon L; Oliveras-Ferraros C; Menendez OJ; Joven J; Lupu R; Menendez JA
    Cell Cycle; 2013 Jan; 12(2):207-18. PubMed ID: 23287468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming.
    Panopoulos AD; Yanes O; Ruiz S; Kida YS; Diep D; Tautenhahn R; Herrerías A; Batchelder EM; Plongthongkum N; Lutz M; Berggren WT; Zhang K; Evans RM; Siuzdak G; Izpisua Belmonte JC
    Cell Res; 2012 Jan; 22(1):168-77. PubMed ID: 22064701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WD repeat domain 82 (Wdr82) facilitates mouse iPSCs generation by interfering mitochondrial oxidative phosphorylation and glycolysis.
    Cui G; Zhou J; Sun J; Kou X; Su Z; Xu Y; Liu T; Sun L; Li W; Wu X; Wei Q; Gao S; Shi K
    Cell Mol Life Sci; 2023 Jul; 80(8):218. PubMed ID: 37470863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiR-31/SDHA Axis Regulates Reprogramming Efficiency through Mitochondrial Metabolism.
    Lee MR; Mantel C; Lee SA; Moon SH; Broxmeyer HE
    Stem Cell Reports; 2016 Jul; 7(1):1-10. PubMed ID: 27346679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolism in human pluripotent stem cells and their differentiated counterparts.
    Varum S; Rodrigues AS; Moura MB; Momcilovic O; Easley CA; Ramalho-Santos J; Van Houten B; Schatten G
    PLoS One; 2011; 6(6):e20914. PubMed ID: 21698063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The TCL1 function revisited focusing on metabolic requirements of stemness.
    Fiorenza MT; Rava A
    Cell Cycle; 2019 Nov; 18(22):3055-3063. PubMed ID: 31564197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells.
    Lees JG; Gardner DK; Harvey AJ
    Development; 2018 Oct; 145(20):. PubMed ID: 30266828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming.
    Nishimura K; Fukuda A; Hisatake K
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of SIRT2 and altered acetylation status of human pluripotent stem cells: possible link to metabolic switch during reprogramming.
    Kwon OS; Han MJ; Cha HJ
    BMB Rep; 2017 Sep; 50(9):435-436. PubMed ID: 28683850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy metabolism plasticity enables stemness programs.
    Folmes CDL; Nelson TJ; Dzeja PP; Terzic A
    Ann N Y Acad Sci; 2012 Apr; 1254():82-89. PubMed ID: 22548573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of energy metabolism in human pluripotent stem cells.
    Liu W; Chen G
    Cell Mol Life Sci; 2021 Dec; 78(24):8097-8108. PubMed ID: 34773132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.