These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21803341)

  • 1. Central inhibition regulates motor output during physical fatigue.
    Tanaka M; Shigihara Y; Watanabe Y
    Brain Res; 2011 Sep; 1412():37-43. PubMed ID: 21803341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural compensation mechanisms to regulate motor output during physical fatigue.
    Tanaka M; Watanabe Y
    Brain Res; 2011 Jun; 1395():46-52. PubMed ID: 21550592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural mechanism of central inhibition during physical fatigue: a magnetoencephalography study.
    Tanaka M; Ishii A; Watanabe Y
    Brain Res; 2013 Nov; 1537():117-24. PubMed ID: 24012875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex.
    Takahashi K; Maruyama A; Maeda M; Etoh S; Hirakoba K; Kawahira K; Rothwell JC
    Clin Neurophysiol; 2009 Jan; 120(1):198-203. PubMed ID: 19028439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement-related desynchronization of the cerebral cortex studied with spatially filtered magnetoencephalography.
    Taniguchi M; Kato A; Fujita N; Hirata M; Tanaka H; Kihara T; Ninomiya H; Hirabuki N; Nakamura H; Robinson SE; Cheyne D; Yoshimine T
    Neuroimage; 2000 Sep; 12(3):298-306. PubMed ID: 10944412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered central nervous system signal during motor performance in chronic fatigue syndrome.
    Siemionow V; Fang Y; Calabrese L; Sahgal V; Yue GH
    Clin Neurophysiol; 2004 Oct; 115(10):2372-81. PubMed ID: 15351380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement--EEG evidence.
    Leocani L; Colombo B; Magnani G; Martinelli-Boneschi F; Cursi M; Rossi P; Martinelli V; Comi G
    Neuroimage; 2001 Jun; 13(6 Pt 1):1186-92. PubMed ID: 11352624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue induced by intermittent maximal voluntary contractions is associated with significant losses in muscle output but limited reductions in functional MRI-measured brain activation level.
    Liu JZ; Zhang L; Yao B; Sahgal V; Yue GH
    Brain Res; 2005 Apr; 1040(1-2):44-54. PubMed ID: 15804425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue induces greater brain signal reduction during sustained than preparation phase of maximal voluntary contraction.
    Liu JZ; Yao B; Siemionow V; Sahgal V; Wang X; Sun J; Yue GH
    Brain Res; 2005 Sep; 1057(1-2):113-26. PubMed ID: 16129419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical fatigue increases neural activation during eyes-closed state: a magnetoencephalography study.
    Tanaka M; Ishii A; Watanabe Y
    Behav Brain Funct; 2015 Nov; 11(1):35. PubMed ID: 26542654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanism of facilitation system during physical fatigue.
    Tanaka M; Ishii A; Watanabe Y
    PLoS One; 2013; 8(11):e80731. PubMed ID: 24278313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neural substrates of physical fatigue sensation to evaluate ourselves: a magnetoencephalography study.
    Ishii A; Tanaka M; Yamano E; Watanabe Y
    Neuroscience; 2014 Mar; 261():60-7. PubMed ID: 24388922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ipsilateral and contralateral responses following unimanual fatigue with and without illusionary mirror visual feedback.
    Carr JC; Bemben MG; Stock MS; DeFreitas JM
    J Neurophysiol; 2021 Jun; 125(6):2084-2093. PubMed ID: 33909484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of daily levels of fatigue and acutely induced fatigue on the visual evoked magnetic response.
    Shigihara Y; Tanaka M; Mizuno K; Ishii A; Yamano E; Funakura M; Kanai E; Watanabe Y
    Brain Res; 2012 May; 1457():44-50. PubMed ID: 22541165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion of the drawing hand induces a progressive increase in muscle activity of the non-dominant hand in Ramachandran's mirror-box therapy.
    Furukawa K; Suzuki H; Fukuda J
    J Rehabil Med; 2012 Nov; 44(11):939-43. PubMed ID: 23027036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural effect of mental fatigue on physical fatigue: a magnetoencephalography study.
    Tanaka M; Ishii A; Watanabe Y
    Brain Res; 2014 Jan; 1542():49-55. PubMed ID: 24505624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebro-muscular and cerebro-cerebral coherence in patients with pre- and perinatally acquired unilateral brain lesions.
    Belardinelli P; Ciancetta L; Staudt M; Pizzella V; Londei A; Birbaumer N; Romani GL; Braun C
    Neuroimage; 2007 Oct; 37(4):1301-14. PubMed ID: 17669666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in voluntary movement execution in Huntington's disease are related to the dominant motor system: evidence from event-related potentials.
    Beste C; Konrad C; Saft C; Ukas T; Andrich J; Pfleiderer B; Hausmann M; Falkenstein M
    Exp Neurol; 2009 Mar; 216(1):148-57. PubMed ID: 19111540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. M1 contributes to the intrinsic but not the extrinsic components of motor-skills.
    Romei V; Thut G; Ramos-Estebanez C; Pascual-Leone A
    Cortex; 2009 Oct; 45(9):1058-64. PubMed ID: 19243742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.