These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21803674)

  • 1. A transition model for finite element simulation of kinematics of central nervous system white matter.
    Pan Y; Shreiber DI; Pelegri AA
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3443-6. PubMed ID: 21803674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the three-dimensional kinematic behavior of axons in central nervous system white matter.
    Singh S; Pelegri AA; Shreiber DI
    Biomech Model Mechanobiol; 2015 Nov; 14(6):1303-15. PubMed ID: 25910712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axon kinematics change during growth and development.
    Hao H; Shreiber DI
    J Biomech Eng; 2007 Aug; 129(4):511-22. PubMed ID: 17655472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter.
    Abolfathi N; Naik A; Sotudeh Chafi M; Karami G; Ziejewski M
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):249-62. PubMed ID: 18846460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of microstructural kinematics during simple elongation of central nervous system tissue.
    Bain AC; Shreiber DI; Meaney DF
    J Biomech Eng; 2003 Dec; 125(6):798-804. PubMed ID: 14986404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy.
    Cloots RJ; van Dommelen JA; Nyberg T; Kleiven S; Geers MG
    Biomech Model Mechanobiol; 2011 Jun; 10(3):413-22. PubMed ID: 20635116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating axonal strain and failure following white matter stretch using contactin-associated protein as a fiduciary marker.
    Singh S; Pelegri AA; Shreiber DI
    J Biomech; 2017 Jan; 51():32-41. PubMed ID: 27939751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A micromechanical hyperelastic modeling of brain white matter under large deformation.
    Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An axonal strain injury criterion for traumatic brain injury.
    Wright RM; Ramesh KT
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):245-60. PubMed ID: 21476072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transversely isotropic constitutive model of excised guinea pig spinal cord white matter.
    Galle B; Ouyang H; Shi R; Nauman E
    J Biomech; 2010 Oct; 43(14):2839-43. PubMed ID: 20832804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter.
    Meaney DF
    Biomech Model Mechanobiol; 2003 Apr; 1(4):279-93. PubMed ID: 14586696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotransmitter-mediated signaling between axons and glial cells.
    Chiu SY; Kriegler S
    Glia; 1994 Jun; 11(2):191-200. PubMed ID: 7927647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tension-based theory of morphogenesis and compact wiring in the central nervous system.
    Van Essen DC
    Nature; 1997 Jan; 385(6614):313-8. PubMed ID: 9002514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis.
    Li XF; Dai LY
    Spine (Phila Pa 1976); 2009 May; 34(11):1140-7. PubMed ID: 19444060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of adult axons in white matter tracts of the central nervous system.
    Davies SJ; Fitch MT; Memberg SP; Hall AK; Raisman G; Silver J
    Nature; 1997 Dec 18-25; 390(6661):680-3. PubMed ID: 9414159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D RVE to Determine Material Properties.
    Pan Y; Sullivan D; Shreiber DI; Pelegri AA
    Front Bioeng Biotechnol; 2013; 1():19. PubMed ID: 25152875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the mechanism of lateral impact aortic isthmus disruption in real-life motor vehicle crashes using a computer-based finite element numeric model: with simulation of prevention strategies.
    Siegel JH; Belwadi A; Smith JA; Shah C; Yang K
    J Trauma; 2010 Jun; 68(6):1375-95. PubMed ID: 20539183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads.
    Cloots RJ; van Dommelen JA; Kleiven S; Geers MG
    Biomech Model Mechanobiol; 2013 Jan; 12(1):137-50. PubMed ID: 22434184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations between tissue-level stresses and strains and cellular damage within the guinea pig spinal cord white matter.
    Galle B; Ouyang H; Shi R; Nauman E
    J Biomech; 2007; 40(13):3029-33. PubMed ID: 17675041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visco-hyperelastic characterization of human brain white matter micro-level constituents in different strain rates.
    Ramzanpour M; Hosseini-Farid M; McLean J; Ziejewski M; Karami G
    Med Biol Eng Comput; 2020 Sep; 58(9):2107-2118. PubMed ID: 32671675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.