These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 2180370)
1. Influence of transition metals added during sporulation on heat resistance of Clostridium botulinum 113B spores. Kihm DJ; Hutton MT; Hanlin JH; Johnson EA Appl Environ Microbiol; 1990 Mar; 56(3):681-5. PubMed ID: 2180370 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature. Graham AF; Mason DR; Peck MW Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606 [TBL] [Abstract][Full Text] [Related]
3. Effect of sporulation temperature on the resistance of Clostridium botulinum type A spores to thermal and high pressure processing. Marshall KM; Nowaczyk L; Morrissey TR; Loeza V; Halik LA; Skinner GE; Reddy NR; Fleischman GJ; Larkin JW J Food Prot; 2015 Jan; 78(1):146-50. PubMed ID: 25581189 [TBL] [Abstract][Full Text] [Related]
4. Chemical manipulation of the heat resistance of Clostridium botulinum spores. Alderton G; Ito KA; Chen JK Appl Environ Microbiol; 1976 Apr; 31(4):492-8. PubMed ID: 5056 [TBL] [Abstract][Full Text] [Related]
5. Effect of sporulation medium and its divalent cation content on the heat and high pressure resistance of Clostridium botulinum type E spores. Lenz CA; Vogel RF Food Microbiol; 2014 Dec; 44():156-67. PubMed ID: 25084658 [TBL] [Abstract][Full Text] [Related]
7. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products. Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778 [TBL] [Abstract][Full Text] [Related]
8. Proposed mechanism for sensitization by hypochlorite treatment of Clostridium botulinum spores. Foegeding PM; Busta FF Appl Environ Microbiol; 1983 Apr; 45(4):1374-9. PubMed ID: 6305269 [TBL] [Abstract][Full Text] [Related]
9. Heat resistance and recovery of spores of non-proteolytic Clostridium botulinum in relation to refrigerated, processed foods with an extended shelf-life. Lund BM; Peck MW Soc Appl Bacteriol Symp Ser; 1994; 23():115S-128S. PubMed ID: 8047905 [No Abstract] [Full Text] [Related]
10. Effect of metal ions on growth and sporulation of Clostridium perfringens in a synthetic medium. Lee KY; Juang TC; Lee KC Zhonghua Min Guo Wei Sheng Wu Xue Za Zhi; 1978 Jun; 11(2):50-61. PubMed ID: 215387 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of sporulation temperature on the high pressure resistance of Clostridium botulinum type E spores and the interconnection with sporulation medium cation contents. Lenz CA; Vogel RF Food Microbiol; 2015 Apr; 46():434-442. PubMed ID: 25475313 [TBL] [Abstract][Full Text] [Related]
12. Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots. Margosch D; Ehrmann MA; Gänzle MG; Vogel RF J Food Prot; 2004 Nov; 67(11):2530-7. PubMed ID: 15553637 [TBL] [Abstract][Full Text] [Related]
13. Inducement of a heat-shock requirement for germination and production of increased heat resistance in Bacillus fastidiosus spores by manganous ions. Aoki H; Slepecky RA J Bacteriol; 1973 Apr; 114(1):137-43. PubMed ID: 4698206 [TBL] [Abstract][Full Text] [Related]
14. Effect of sporulation temperature on some properties of spores of non-proteolytic Clostridium botulinum. Peck MW; Evans RI; Fairbairn DA; Hartley MG; Russell NJ Int J Food Microbiol; 1995 Dec; 28(2):289-97. PubMed ID: 8750674 [No Abstract] [Full Text] [Related]
15. Effect of packaging systems and pressure fluids on inactivation of Clostridium botulinum spores by combined high pressure and thermal processing. Patazca E; Morrissey TR; Loeza V; Reddy NR; Skinner GE; Larkin JW J Food Prot; 2013 Mar; 76(3):448-55. PubMed ID: 23462082 [TBL] [Abstract][Full Text] [Related]
16. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores. Reddy NR; Tetzloff RC; Skinner GE Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779 [TBL] [Abstract][Full Text] [Related]
17. Effect of plating medium on heat activation requirement of Clostridium botulinum spores. Montville TJ Appl Environ Microbiol; 1981 Oct; 42(4):734-6. PubMed ID: 7039510 [TBL] [Abstract][Full Text] [Related]
18. Effects of minerals on sporulation and heat resistance of Clostridium sporogenes. Mah JH; Kang DH; Tang J Int J Food Microbiol; 2008 Dec; 128(2):385-9. PubMed ID: 18986726 [TBL] [Abstract][Full Text] [Related]
19. Effect of lysozyme concentration, heating at 90 degrees C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum. Peck MW; Fernandez PS Lett Appl Microbiol; 1995 Jul; 21(1):50-4. PubMed ID: 7662337 [TBL] [Abstract][Full Text] [Related]
20. Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores. Gao YL; Ju XR J Microbiol Methods; 2008 Jan; 72(1):20-8. PubMed ID: 18068839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]