BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21803771)

  • 61. Increased SHP-1 protein expression by high glucose levels reduces nephrin phosphorylation in podocytes.
    Denhez B; Lizotte F; Guimond MO; Jones N; Takano T; Geraldes P
    J Biol Chem; 2015 Jan; 290(1):350-8. PubMed ID: 25404734
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Resveratrol potentiates vitamin D and nuclear receptor signaling.
    Dampf Stone A; Batie SF; Sabir MS; Jacobs ET; Lee JH; Whitfield GK; Haussler MR; Jurutka PW
    J Cell Biochem; 2015 Jun; 116(6):1130-43. PubMed ID: 25536521
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of the 5-lipoxygenase promoter and characterization of a vitamin D receptor binding site.
    Sorg BL; Klan N; Seuter S; Dishart D; Rådmark O; Habenicht A; Carlberg C; Werz O; Steinhilber D
    Biochim Biophys Acta; 2006 Jul; 1761(7):686-97. PubMed ID: 16750418
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evidence for 1,25-dihydroxyvitamin D3-independent transactivation by the vitamin D receptor: uncoupling the receptor and ligand in keratinocytes.
    Ellison TI; Eckert RL; MacDonald PN
    J Biol Chem; 2007 Apr; 282(15):10953-62. PubMed ID: 17310066
    [TBL] [Abstract][Full Text] [Related]  

  • 65. 1α,25-dihydroxyvitamin D3 stimulates human SOST gene expression and sclerostin secretion.
    Wijenayaka AR; Yang D; Prideaux M; Ito N; Kogawa M; Anderson PH; Morris HA; Solomon LB; Loots GG; Findlay DM; Atkins GJ
    Mol Cell Endocrinol; 2015 Sep; 413():157-67. PubMed ID: 26112182
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Vitamin D receptor signaling in podocytes protects against diabetic nephropathy.
    Wang Y; Deb DK; Zhang Z; Sun T; Liu W; Yoon D; Kong J; Chen Y; Chang A; Li YC
    J Am Soc Nephrol; 2012 Dec; 23(12):1977-86. PubMed ID: 23123403
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Perspectives on mechanisms of gene regulation by 1,25-dihydroxyvitamin D3 and its receptor.
    Pike JW; Meyer MB; Watanuki M; Kim S; Zella LA; Fretz JA; Yamazaki M; Shevde NK
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):389-95. PubMed ID: 17223545
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Heterodimer requirement for gene regulation by Vitamin D in variant OK cells.
    Koszewski NJ; Rowan A
    Steroids; 2003 Apr; 68(4):307-14. PubMed ID: 12787891
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.
    DeSmet ML; Fleet JC
    J Steroid Biochem Mol Biol; 2017 Oct; 173():194-201. PubMed ID: 28104492
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Functional characterization of vitamin D responding regions in the human 5-Lipoxygenase gene.
    Seuter S; Väisänen S; Rådmark O; Carlberg C; Steinhilber D
    Biochim Biophys Acta; 2007 Jul; 1771(7):864-72. PubMed ID: 17500032
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Screening and identification of substances that regulate nephrin gene expression using engineered reporter podocytes.
    Yamauchi K; Takano Y; Kasai A; Hayakawa K; Hiramatsu N; Enomoto N; Yao J; Kitamura M
    Kidney Int; 2006 Sep; 70(5):892-900. PubMed ID: 16820792
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The impact of chromatin organization of vitamin D target genes.
    Carlberg C; Dunlop TW
    Anticancer Res; 2006; 26(4A):2637-45. PubMed ID: 16886674
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization.
    Healy KD; Frahm MA; DeLuca HF
    Arch Biochem Biophys; 2005 Jan; 433(2):466-73. PubMed ID: 15581603
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A composite element binding the vitamin D receptor, retinoid X receptor alpha, and a member of the CTF/NF-1 family of transcription factors mediates the vitamin D responsiveness of the c-fos promoter.
    Candeliere GA; Jurutka PW; Haussler MR; St-Arnaud R
    Mol Cell Biol; 1996 Feb; 16(2):584-92. PubMed ID: 8552086
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Recovery and maintenance of nephrin expression in cultured podocytes and identification of HGF as a repressor of nephrin.
    Takano Y; Yamauchi K; Hiramatsu N; Kasai A; Hayakawa K; Yokouchi M; Yao J; Kitamura M
    Am J Physiol Renal Physiol; 2007 May; 292(5):F1573-82. PubMed ID: 17244893
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling.
    Lisse TS; Liu T; Irmler M; Beckers J; Chen H; Adams JS; Hewison M
    FASEB J; 2011 Mar; 25(3):937-47. PubMed ID: 21123297
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transcriptional activation of the wild-type and mutant vitamin D receptors by vitamin D3 analogs.
    Futawaka K; Tagami T; Fukuda Y; Koyama R; Nushida A; Nezu S; Yamamoto H; Imamoto M; Kasahara M; Moriyama K
    J Mol Endocrinol; 2016 Jul; 57(1):23-32. PubMed ID: 27154546
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone.
    Meyer MB; Goetsch PD; Pike JW
    J Steroid Biochem Mol Biol; 2010 Jul; 121(1-2):136-41. PubMed ID: 20171278
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor.
    Claro da Silva T; Hiller C; Gai Z; Kullak-Ublick GA
    J Steroid Biochem Mol Biol; 2016 Oct; 163():77-87. PubMed ID: 27107558
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Differential regulation of vitamin D responsive elements in normal and transformed keratinocytes.
    Xie Z; Bikle DD
    J Invest Dermatol; 1998 May; 110(5):730-3. PubMed ID: 9579536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.