BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21803884)

  • 1. Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli.
    Zhu H; Gonzalez R; Bobik TA
    Appl Environ Microbiol; 2011 Sep; 77(18):6441-50. PubMed ID: 21803884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose.
    Murarka A; Clomburg JM; Moran S; Shanks JV; Gonzalez R
    J Biol Chem; 2010 Oct; 285(41):31548-58. PubMed ID: 20667837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentative 2-carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans.
    Marttila E; Bowyer P; Sanglard D; Uittamo J; Kaihovaara P; Salaspuro M; Richardson M; Rautemaa R
    Mol Oral Microbiol; 2013 Aug; 28(4):281-91. PubMed ID: 23445445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel alcohol dehydrogenase activity in a mutant of Salmonella able to use ethanol as sole carbon source.
    Dailly Y; Mat-Jan F; Clark DP
    FEMS Microbiol Lett; 2001 Jul; 201(1):41-5. PubMed ID: 11445165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.
    Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO
    Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation.
    Cunningham PR; Clark DP
    Mol Gen Genet; 1986 Dec; 205(3):487-93. PubMed ID: 3550385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel route for ethanol oxidation in the acetogenic bacterium Acetobacterium woodii: the acetaldehyde/ethanol dehydrogenase pathway.
    Bertsch J; Siemund AL; Kremp F; Müller V
    Environ Microbiol; 2016 Sep; 18(9):2913-22. PubMed ID: 26472176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.
    Postma E; Verduyn C; Scheffers WA; Van Dijken JP
    Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins.
    Membrillo-Hernandez J; Echave P; Cabiscol E; Tamarit J; Ros J; Lin EC
    J Biol Chem; 2000 Oct; 275(43):33869-75. PubMed ID: 10922373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene replacement and elimination using λRed- and FLP-based tool to re-direct carbon flux in acetogen biocatalyst during continuous CO₂/H₂ blend fermentation.
    Tyurin M
    J Ind Microbiol Biotechnol; 2013 Jul; 40(7):749-58. PubMed ID: 23649912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a homobutanol fermentation pathway in Escherichia coli EG03.
    Garza E; Zhao J; Wang Y; Wang J; Iverson A; Manow R; Finan C; Zhou S
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1101-7. PubMed ID: 22776992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetaldehyde dehydrogenase activity of the AdhE protein of Escherichia coli is inhibited by intermediates in ubiquinone synthesis.
    Gupta S; Mat-Jan F; Latifi M; Clark DP
    FEMS Microbiol Lett; 2000 Jan; 182(1):51-5. PubMed ID: 10612730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides.
    Nikel PI; Ramirez MC; Pettinari MJ; Méndez BS; Galvagno MA
    J Appl Microbiol; 2010 Aug; 109(2):492-504. PubMed ID: 20149000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.
    Pavlova SI; Jin L; Gasparovich SR; Tao L
    Microbiology (Reading); 2013 Jul; 159(Pt 7):1437-1446. PubMed ID: 23637459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli for acetaldehyde overproduction using pyruvate decarboxylase from Zymomonas mobilis.
    Balagurunathan B; Tan L; Zhao H
    Enzyme Microb Technol; 2018 Feb; 109():58-65. PubMed ID: 29224627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase.
    Zheng Y; Kahnt J; Kwon IH; Mackie RI; Thauer RK
    J Bacteriol; 2014 Nov; 196(22):3840-52. PubMed ID: 25157086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyruvate-formate-lyase-deactivase and acetyl-CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE.
    Kessler D; Leibrecht I; Knappe J
    FEBS Lett; 1991 Apr; 281(1-2):59-63. PubMed ID: 2015910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Production of L-lactic acid from pentose by a genetically engineered Escherichia coli].
    Zhao J; Xu L; Wang Y; Zhao X; Wang J
    Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):328-37. PubMed ID: 23858707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetaldehyde coenzyme A dehydrogenase of Escherichia coli.
    Clark DP; Cronan JE
    J Bacteriol; 1980 Oct; 144(1):179-84. PubMed ID: 6998946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production.
    Zhou S; Iverson AG; Grayburn WS
    Biotechnol Lett; 2008 Feb; 30(2):335-42. PubMed ID: 17957344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.