These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21803899)

  • 21. Improved Expression and Optimization of Trehalose Synthase by Regulation of P
    Liu H; Liu H; Yang S; Wang R; Wang T
    Sci Rep; 2019 Apr; 9(1):6585. PubMed ID: 31036837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L-lactic acid production by Bacillus subtilis MUR1.
    Gao T; Wong Y; Ng C; Ho K
    Bioresour Technol; 2012 Oct; 121():105-10. PubMed ID: 22858473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter.
    Toymentseva AA; Schrecke K; Sharipova MR; Mascher T
    Microb Cell Fact; 2012 Oct; 11():143. PubMed ID: 23110498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis.
    Krüger S; Hecker M
    J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Knockout of the ccpA gene in Bacillus subtilis and influence on riboflavin production].
    Ying M; Ban R
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):23-7. PubMed ID: 16579459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin.
    Fan X; Wu H; Jia Z; Li G; Li Q; Chen N; Xie X
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8753-8762. PubMed ID: 30120523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes.
    Nagarajan DR; Krishnan C
    Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of different Bacillus subtilis expression systems.
    Vavrová L; Muchová K; Barák I
    Res Microbiol; 2010 Nov; 161(9):791-7. PubMed ID: 20863884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system.
    Wenzel M; Altenbuchner J
    Microbiology (Reading); 2015 Oct; 161(10):1942-1949. PubMed ID: 26238998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The multifunctionality of expression systems in
    Souza CC; Guimarães JM; Pereira SDS; Mariúba LAM
    Exp Biol Med (Maywood); 2021 Dec; 246(23):2443-2453. PubMed ID: 34424091
    [No Abstract]   [Full Text] [Related]  

  • 31. Physiological and technological aspects of large-scale heterologous-protein production with yeasts.
    Hensing MC; Rouwenhorst RJ; Heijnen JJ; van Dijken JP; Pronk JT
    Antonie Van Leeuwenhoek; 1995; 67(3):261-79. PubMed ID: 7778895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global expression profiling of Bacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources.
    Jürgen B; Tobisch S; Wümpelmann M; Gördes D; Koch A; Thurow K; Albrecht D; Hecker M; Schweder T
    Biotechnol Bioeng; 2005 Nov; 92(3):277-98. PubMed ID: 16178035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond.
    Cui W; Han L; Suo F; Liu Z; Zhou L; Zhou Z
    World J Microbiol Biotechnol; 2018 Sep; 34(10):145. PubMed ID: 30203131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.
    Zhang K; Su L; Duan X; Liu L; Wu J
    Microb Cell Fact; 2017 Feb; 16(1):32. PubMed ID: 28219382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-efficiency expression and secretion of human FGF21 in Bacillus subtilis by intercalation of a mini-cistron cassette and combinatorial optimization of cell regulatory components.
    Li D; Fu G; Tu R; Jin Z; Zhang D
    Microb Cell Fact; 2019 Jan; 18(1):17. PubMed ID: 30691455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S
    Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E; Servant P; Poncet S; Deutscher J
    Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis.
    Ali NO; Bignon J; Rapoport G; Debarbouille M
    J Bacteriol; 2001 Apr; 183(8):2497-504. PubMed ID: 11274109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient production of recombinant DNA proteins in Saccharomyces cerevisiae by controlled high-cell-density fermentation.
    Alberghina L; Porro D; Martegani E; Ranzi BM
    Biotechnol Appl Biochem; 1991 Aug; 14(1):82-92. PubMed ID: 1910586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.