These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 21803937)
21. Parental and Environmental Control of Seed Dormancy in Iwasaki M; Penfield S; Lopez-Molina L Annu Rev Plant Biol; 2022 May; 73():355-378. PubMed ID: 35138879 [TBL] [Abstract][Full Text] [Related]
23. Temperature during seed maturation controls seed vigour through ABA breakdown in the endosperm and causes a passive effect on DOG1 mRNA levels during entry into quiescence. Chen X; Yoong FY; O'Neill CM; Penfield S New Phytol; 2021 Nov; 232(3):1311-1322. PubMed ID: 34314512 [TBL] [Abstract][Full Text] [Related]
24. Seed germination and dormancy: The classic story, new puzzles, and evolution. Nonogaki H J Integr Plant Biol; 2019 May; 61(5):541-563. PubMed ID: 30565406 [TBL] [Abstract][Full Text] [Related]
25. The Evening Complex and the Chromatin-Remodeling Factor PICKLE Coordinately Control Seed Dormancy by Directly Repressing Zha P; Liu S; Li Y; Ma T; Yang L; Jing Y; Lin R Plant Commun; 2020 Mar; 1(2):100011. PubMed ID: 33404551 [TBL] [Abstract][Full Text] [Related]
26. CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Yano R; Kanno Y; Jikumaru Y; Nakabayashi K; Kamiya Y; Nambara E Plant Physiol; 2009 Oct; 151(2):641-54. PubMed ID: 19648230 [TBL] [Abstract][Full Text] [Related]
27. Highly Sprouting-Tolerant Wheat Grain Exhibits Extreme Dormancy and Cold Imbibition-Resistant Accumulation of Abscisic Acid. Kashiwakura Y; Kobayashi D; Jikumaru Y; Takebayashi Y; Nambara E; Seo M; Kamiya Y; Kushiro T; Kawakami N Plant Cell Physiol; 2016 Apr; 57(4):715-32. PubMed ID: 26971301 [TBL] [Abstract][Full Text] [Related]
29. Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals. Footitt S; Müller K; Kermode AR; Finch-Savage WE Plant J; 2015 Feb; 81(3):413-25. PubMed ID: 25439058 [TBL] [Abstract][Full Text] [Related]
30. Seed Dormancy in Arabidopsis Is Controlled by Alternative Polyadenylation of DOG1. Cyrek M; Fedak H; Ciesielski A; Guo Y; Sliwa A; Brzezniak L; Krzyczmonik K; Pietras Z; Kaczanowski S; Liu F; Swiezewski S Plant Physiol; 2016 Feb; 170(2):947-55. PubMed ID: 26620523 [TBL] [Abstract][Full Text] [Related]
31. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Lee KP; Piskurewicz U; Turecková V; Strnad M; Lopez-Molina L Proc Natl Acad Sci U S A; 2010 Nov; 107(44):19108-13. PubMed ID: 20956298 [TBL] [Abstract][Full Text] [Related]
32. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nishimura N; Tsuchiya W; Moresco JJ; Hayashi Y; Satoh K; Kaiwa N; Irisa T; Kinoshita T; Schroeder JI; Yates JR; Hirayama T; Yamazaki T Nat Commun; 2018 Jun; 9(1):2132. PubMed ID: 29875377 [TBL] [Abstract][Full Text] [Related]
33. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Huo H; Wei S; Bradford KJ Proc Natl Acad Sci U S A; 2016 Apr; 113(15):E2199-206. PubMed ID: 27035986 [TBL] [Abstract][Full Text] [Related]
34. Role of ethylene and proteolytic N-degron pathway in the regulation of Arabidopsis seed dormancy. Wang X; Gomes MM; Bailly C; Nambara E; Corbineau F J Integr Plant Biol; 2021 Dec; 63(12):2110-2122. PubMed ID: 34542217 [TBL] [Abstract][Full Text] [Related]
35. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Ding ZJ; Yan JY; Li GX; Wu ZC; Zhang SQ; Zheng SJ Plant J; 2014 Sep; 79(5):810-23. PubMed ID: 24946881 [TBL] [Abstract][Full Text] [Related]
36. ETR1/RDO3 Regulates Seed Dormancy by Relieving the Inhibitory Effect of the ERF12-TPL Complex on Li X; Chen T; Li Y; Wang Z; Cao H; Chen F; Li Y; Soppe WJJ; Li W; Liu Y Plant Cell; 2019 Apr; 31(4):832-847. PubMed ID: 30837295 [TBL] [Abstract][Full Text] [Related]
37. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Toh S; Imamura A; Watanabe A; Nakabayashi K; Okamoto M; Jikumaru Y; Hanada A; Aso Y; Ishiyama K; Tamura N; Iuchi S; Kobayashi M; Yamaguchi S; Kamiya Y; Nambara E; Kawakami N Plant Physiol; 2008 Mar; 146(3):1368-85. PubMed ID: 18162586 [TBL] [Abstract][Full Text] [Related]
38. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Footitt S; Huang Z; Clay HA; Mead A; Finch-Savage WE Plant J; 2013 Jun; 74(6):1003-15. PubMed ID: 23590427 [TBL] [Abstract][Full Text] [Related]
39. Identification of genes involved in metabolism and signalling of abscisic acid and gibberellins during Epimedium pseudowushanense B.L.Guo seed morphophysiological dormancy. Ma Y; Chen X; Guo B Plant Cell Rep; 2018 Jul; 37(7):1061-1075. PubMed ID: 29796945 [TBL] [Abstract][Full Text] [Related]
40. Reduced Dormancy5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis. Xiang Y; Nakabayashi K; Ding J; He F; Bentsink L; Soppe WJ Plant Cell; 2014 Nov; 26(11):4362-75. PubMed ID: 25415980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]